

No. of Printed Pages: 4

BIELE-005

DIPLOMA - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)

Term-End Examination December, 2015

BIELE-005: INDUSTRIAL ELECTRONICS

Time: 2 hours Maximum Marks: 70

Note: Question no. 1 is **compulsory**. Attempt any **four** questions from the rest. Missing data may be assumed suitably. Use of scientific calculator is permitted.

1. Choose the correct answer:

 $7 \times 2 = 14$

- (a) Latching current in a P-N-P-N SCR is
 - (i) normal operating current
 - (ii) current corresponding to break-over voltage
 - (iii) minimum current to keep the device on
 - (iv) None of the above
- (b) In a three-phase full wave fully controlled bridge rectifier, each SCR conducts for a duration of
 - (i) 120°
 - (ii) 60°
 - (iii) 45°
 - (iv) 30°

- (c) In a UJT, with V_{BB} as voltage across two base terminals, emitter potential at peak point is
 - (i) ηV_{BB}
 - (ii) ηV_D
 - (iii) $\eta V_{BB} + V_{D}$
 - (iv) $\eta V_D + V_{BB}$
- (d) A UJT exhibits a negative resistance region
 - (i) before the peak point
 - (ii) between the peak point and the valley point
 - (iii) after the valley point
 - (iv) None of the above
- (e) An ideal transistor switch has
 - (i) infinite ON-value resistance
 - (ii) zero OFF-value resistance
 - (iii) no power loss
 - (iv) None of the above
- (f) The turn-on time of a transistor is
 - (i) $t_{ON} = t_d + t_f$
 - (ii) $t_{ON} = t_s + t_f$
 - (iii) $t_{ON} = t_d + t_r$
 - (iv) $t_{ON} = t_d + t_s$

	(g)	In a single-phase semi-converter, for continuous conduction, freewheeling diode conducts for	
		(i) ∞	
		(ii) $\pi - \alpha$	
		(iii) π	
		(iv) $\alpha - \pi$	
2.	(a)	Draw a two-transistor representation of a silicon-controlled rectifier (SCR) and describe the method and condition for its conduction.	7
	(b)	Give the schematic representation of the basic structure of a power transistor and explain its working.	7
3.	(a)	Explain the construction and draw the volt – ampere characteristic of an Insulated Gate Bipolar Transistor (IGBT).	7
	(b)	Give comparison among Power MOSFET, Power Transistor and Power IGBT.	7
4.	(a)	The intrinsic stand-off ratio for UJT is determined to be 0.60. Inter base resistance is 7 k Ω . What are the UJT static values of R_{B_1} and R_{B_2} ?	7

negative-resistance device?

Explain the V - I characteristic curve of UJT. Why is it called current-controlled

7

(b)

		load voltage and load current for (i) RL Load, and (ii) RL load with freewheeling diode.	7
	(b)	Explain the construction and characteristics of DIAC.	7
6.	(a)	With the help of a neatly labelled circuit diagram explain the working principle of a single-phase full wave half-controlled bridge rectifier using two SCRs and two diodes.	7
	(b)	Explain the forward voltage triggering and gate triggering methods for turning on a thyristor.	7

5. (a) For a single-phase half-wave controlled

- **7.** Write short notes on any **two** of the following: $2\times 7=14$
 - (a) Three-phase Delta-Wye Bridge Rectifier
 - (b) GTO
 - (c) Resistance Capacitance (RC) Firing Circuit