

No. of Printed Pages: 4

BIEL-030

DIPLOMA - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI) / ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION

ENGINEERING (ACECVI)

Term-End Examination
December, 2015

BIEL-030: DIGITAL ELECTRONICS

Time: 2 hours Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. All questions carry equal marks.

- 1. Attempt *all* the multiple choice and *True/False* questions. $7 \times 2 = 14$
 - (a) Gray code is a self-complementing code. [T/F]
 - (b) One KB is equal to 1024 bytes. [T/F]
 - (c) 1's complement of 101001 is 010110. [T/F]
 - (d) What is the function of EX-OR Gate?
 - (i) F = A + B
 - (ii) $F = A \oplus B$
 - (iii) $F = A \cdot B$
 - (iv) None of the above

		• · · •	
	(i)	2 bit	
	(ii)	1 bit	
	(iii)	4 bit	
	(iv)	None of the above	
(f)	What is the full form of POS?		
	(i)	Sum of Product	
	(ii)	Product of Square	
	(iii)	Product of Sum	
	(iv)	None of the above	
(g)	How	many inputs are required for 4×1	
	multiplexer?		
	(i)	4	
	(ii)	8	
	(iii)	16	
	(iv)	32	
(a)	Minimize the following Boolean functions		
	usin	g Boolean's law: $2 \times 3\frac{1}{9} = 7$	
	(i)	F(a, b, c) = a b c + a b c + a b c +	

(e) A flip-flop can store

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

(ii)
$$F(a, b, c) = a \overline{b} \overline{c} + a \overline{b} c + \overline{a} \overline{b} \overline{c}$$

abc + abc

2.

- (b) (i) Convert the Decimal Number 12.6875 into Binary Number.
 - (ii) Convert the Binary Number 110001·010 into Decimal Number. $2\times3\frac{1}{2}=7$
- 3. Minimize the following Boolean functions using K-map and implement logic circuit: 2×7=14
 - (a) $F(A, B, C, D) = \sum (0, 1, 3, 5, 9, 10, 12)$
 - (b) $F(A, B, C, D) = \sum (0, 1, 5, 7, 9, 10, 15) + d\{2, 6, 8\}$ using NAND Gate only.
- 4. (a) Draw and explain NAND and X-NOR
 Gates. 3+3=6
 - (b) Discuss sequence generator and detector circuits.
- 5. (a) What is TTL logic? Explain Realization of NAND Gate using TTL logic.
 - (b) What is ECL logic? Explain ECL OR Gate and ECL NOR Gate with diagrams.

Explain the following: (a) 6. 7 (i) Cumulative, Associative and Distributive Laws De Morgan's Theorem (ii) Differentiate between combinational circuit (b) and sequential circuit with examples. 7 What is Demultiplexer? What is the application 7. of a Demultiplexer? Draw and explain 1:8 Demux. 14 8. any four of the Write short notes on $4 \times 3 \frac{1}{2} = 14$ following: **Universal Gate** (a) Full Adder (b) (c) 4-bit Shift Register (d) J-K flip-flop (e) Synchronous Counter