00618

No. of Printed Pages: 6

BIEL-028

DIPLOMA – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI) / ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING (ACECVI)

Term-End Examination

December, 2015

BIEL-028 : CIRCUITS AND NETWORKS

Time : 2 hours

Maximum Marks: 70

Note: Attempt five questions in all. Question no. 1 is compulsory.

1. Choose the correct alternative.

(a) The Laplace transform of u(t) is

2

(i)
$$\frac{1}{s^2}$$

(ii) $\frac{1}{s}$
(iii) $\frac{2}{s^3}$
(iv) 1

BIEL-028

to the same to the second

connected in series. The equivalent inductance is

2

 $\mathbf{2}$

 $\mathbf{2}$

(i) 11 H

(b)

- (ii) 64 H
- (iii) 12 H
- (iv) 10 H
- (c) If a circuit element has the capability of enhancing the energy level of a signal passing through it, it is called a/an _____. 2
 - (i) passive element
 - (ii) active element
 - (iii) Both active and passive
 - (iv) Either passive or active
- (d) The frequency that separates the pass band and the attenuation band is known as ______frequency.
- (e) Q-factor of a series resonating circuit is
 - (i) $Q = \frac{1}{\omega_0 RC}$

(ii)
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

- (iii) Both (i) and (ii)
- (iv) None of the above

BIEL-028

(i)
$$L\int v(t) dt$$

(ii)
$$\frac{1}{L}\int v(t) dt$$

(iii)
$$L \frac{d}{dt} [v(t)]$$

(iv)
$$L^2 \int v(t) dt$$

(a)

Calculate the power loss across the 10 Ω resistor using Thevenin's theorem for the circuit shown in Figure 1.

Figure 1

BIEL-028

7

2

(b) Find V by superposition theorem in Figure 2. 7

Figure 2

- 3. (a) A series LCR circuit has inductance of 10 mH and resistance of 2 Ω . What is the value of capacitance that will produce resonance at 15.9 kHz?
 - (b) Define figure of merit, current bandwidth, impedance and selectivity in series resonance.
- 4. (a) In a series RC circuit, the resistance is of 2Ω while the capacitor is of 1/4 f. Find the transfer function of the voltage and the drop across the capacitor assuming the supply voltage to be $V_0(t) = tu(t)$.
 - (b) Find i(t) in Figure 3. Assume zero initial response.

Figure 3

BIEL-028

6

8

8

- 5. (a) Design a constant k high pass filter having $f_c = 4$ kHz and design impedance, $R_0 = 600 \Omega (\pi \text{ section}).$
 - (b) Design a constant k low pass filter having $f_c = 2$ kHz and design impedance $R_0 = 600 \Omega$. Obtain the value of attenuation at 4 kHz.
- 6. (a) Obtain the transfer function $V_2(s)/V_1(s)$ in Figure 4.

Figure 4

(b) In the network of Figure 5, find the pole-zero plot.

Figure 5

P.T.O.

7

7

7

- 7. (a) Derive the Reciprocity condition of Y parameter.
 - (b) Find the Z-parameters for the network shown in Figure 6.

Figure 6

- 8. Write short notes on any *four* of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Applications of Resonance Circuits
 - (b) Norton's Theorem
 - (c) Hybrid Parameters
 - (d) Attenuators
 - (e) Parallel Resonance

BIEL-028

1,000

7

7