00268

No. of Printed Pages : 5

BICS-029

DIPLOMA – VIEP – COMPUTER SCIENCE AND ENGINEERING (DCSVI) / ADVANCED LEVEL CERTIFICATE COURSE IN COMPUTER SCIENCE AND ENGINEERING (ACCSVI)

Term-End Examination

December, 2015

BICS-029 : ALGORITHMS AND LOGIC DESIGN

Time : 2 hours

Maximum Marks : 70

- **Note :** Attempt any **five** questions. Question number 1 is **compulsory**. Each question carries equal marks.
- 1. Choose the correct answer from the given four alternatives :
 - (a) The average number of comparisons in sequential search is

2

P.T.O.

(i)
$$\frac{n+1}{2}$$

(ii) $\frac{n(n+1)}{2}$
(iii) $\frac{1}{2}(n-1)$
(iv) $\frac{n(n-1)}{2}$

BICS-029

- (b) In the worst case time complexity of binary search is
 - (i) $O(n \log n)$
 - (ii) $O(\log n^2)$
 - (iii) $O(\log n)$
 - (iv) $O(\log n 1)$

(c)

- The number of interchanges needed in Insertion Sort method is on an average
- (i) $\frac{n(n-1)}{2}$

(ii)
$$\frac{n^2}{4}$$

(iii)
$$\frac{n^2}{2}$$

(iv)
$$\frac{n(n+1)}{2}$$

(d) The runtime efficiency of Quick Sort in the worst case situation is

2

2

2

- (i) $O(\log n)$
- (ii) $O(n \log n)$
- (iii) O(log 2n)
- (iv) $O(n^2)$

BICS-029

- (e) In which sort the storage complexity is **not** best?
 - (i) Heap Sort
 - (ii) Bucket Sort
 - (iii) Merge Sort
 - (iv) Quick Sort
- (f) Which one of the following methods is most efficient, if the successor value of k is kept prime to each other ?
 - (i) Bucket Sort
 - (ii) Shell Sort

(iii) Merge Sort

- (iv) Heap Sort
- (g) The average number of comparisons in Bubble Sort is

3

(i)
$$\frac{n(n-1)}{2}$$

(ii)
$$\frac{n^2}{4}$$

(iii)
$$\frac{n^2}{2}$$

(iv)
$$\frac{n(n+1)}{2}$$

BICS-029

2

2

P.T.O.

- 2. (a) Illustrate with an example the components and design of a flow chart.
 - (b) What do you understand by the term algorithm? Explain the necessary steps for the development of an algorithm.

7

7

7

7

7

7

7

7

7

7

- **3.** (a) What is pseudocode ? Explain and discuss the use of pseudocode.
 - (b) What is a recursive algorithm ? Explain with the help of an example.
- 4. (a) What do you understand by sorting technique ? Write an algorithm for Quick Sort and explain it.
 - (b) Differentiate between straight sequential search and binary search technique with examples.
- 5. (a) Write the divide and conquer approach for binary search and calculate its average time complexity.
 - (b) Differentiate between Insertion Sort and Selection Sort with examples.
- 6. (a) How do you validate an algorithm ? Explain the steps needed to test a program.
 - (b) Write and explain all the stages of Program Development Life Cycle.

BICS-029

- (a) What is a complexity ? Write the types of complexity and also explain Big-oh and Big-omega notations.
 - (b) Write an algorithm for Merge Sort. Sort the following values as per your algorithm :

5, 8, 1, 2, 6, 7, 3

- 8. Write short notes on any *four* of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Bubble Sort
 - (b) Shell Sort
 - (c) Merge Sort
 - (d) Fibonacci Search
 - (e) Analyze Algorithm
 - (f) Sequential Search

7