00391

No. of Printed Pages : 3

BICEE-020

B.Tech. CIVIL ENGINEERING (BTCLEVI) Term-End Examination December, 2015

BICEE-020 : RELIABILITY AND OPTIMIZATION OF STRUCTURES

Time : 3 hours

Maximum Marks: 70

- **Note :** Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted.
- 1. (a) Differentiate between 10 g normal distribution and binomial distribution.

4

(b) Let the stress in a member X and the area of section Y be independent random variables, the force Z in the member is given by

 $\mathbf{Z} = \mathbf{X}\mathbf{Y}.$

It is given that

 $\mathbf{f}_{\mathbf{x}}(\mathbf{x}) = 1/8 \quad 0 \le \mathbf{x} \le 4.$

 $f_{\mathbf{v}}(\mathbf{y}) = 1/9 \quad 0 \le \mathbf{y} \le 9.$

Determine the PDF (Partial differential function) of Z. 10

BICEE-020

 and Gamma distribution. (b) Discuss the principle of De-Morgan's 1 Write the basic axioms of probability. 3. (a) (i) Discuss the first order second mom method (FOSM). (ii) Explain the Level 2 reliability. 	6 law. 8 nent 4 ility 4 ocal
 (b) Discuss the principle of De-Morgan's i Write the basic axioms of probability. 3. (a) (i) Discuss the first order second mom method (FOSM). (ii) Explain the Level 2 reliability. 	law. 8 nent 4 ility 4 ocal
 3. (a) (i) Discuss the first order second mom method (FOSM). (ii) Explain the Level 2 reliable 	nent 4 ility 4 ocal
(ii) Explain the Level 2 reliab	ility 4 .ocal 1111
methods.	ocal 1um
(b) What is meant by local minimum, le maximum, and global or absolute minim in a single variable optimization problem	n? 6
4. (a) Using inverse transformation techn develop expressions for generating ran deviates of Y having following distributi	nique, ndom ons : 10
(i) Uniform distribution	
(ii) Exponential distribution	
(b) What is the use of sample size in stud distribution of strength in flexure ?	y of 4
5. (a) Discuss the Monte-Carlo method. Write various applications.	e its 8
(b) (i) What do you mean by slack variabl and surplus variable in linear programming problem ? What are they used for ?	le 3
(ii) State any four applications of simp method.	plex 3

BICEE-020

- **6.** (a) Give three reasons why the study of unconstrained minimization methods is important.
 - (b) State the iterative approach used in unconstrained optimization.
 - (c) List the different random search methods in unconstrained optimization problem. 4
- 7. (a) Define independent and mutually exculusive events. Can two events be mutually exculsive and independent simultaneously? Support your answer with example.
 - (b) Write short notes on any *two* of the following: $2 \times 4 = 8$
 - (i) Variable Metric Method
 - (ii) Bayes' Theorem
 - (iii) Classical Optimization Technique
 - (iv) Grid and Random Method

BICEE-020

1,000

4

6

6

3