No. of Printed Pages: 8

BET-024

DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN ELECTRICAL AND MECHANICAL ENGINEERING (DEME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI

Term-End Examination

December, 2015

00631

BET-024 : E/M ENGINEERING

Time : 2 hours

Maximum Marks : 70

Note : All questions are **compulsory**. Use of scientific calculator is permitted.

- 1. Select the correct answer from the given four alternatives for the following multiple choice objective type questions : $14 \times 1=14$
 - (a) If the temprature remains constant, the volume of the given mass of a gas is inversely proportional to the pressure. This is known as
 - (i) Charles' Law
 - (ii) Boyle's Law
 - (iii) Joule's Law
 - (iv) Gay-Lussac's Law

BET-024

1

P.T.O.

- (b) In which of the following processes, will the internal energy of a system remain constant?
 - (i) Isothermal
 - (ii) Adiabatic
 - (iii) Isobaric
 - (iv) Isochoric
- (c) A process in which the gas is heated or expanded in such a way that the product of its pressure and volume remains constant is called

- (i) Isothermal process
- (ii) Isobaric process
- (iii) Adiabatic process
- (iv) Polytropic process
- (d) An adiabatic process occurs at constant
 - (i) temperature
 - (ii) pressure
 - (iii) heat
 - (iv) None of the above

BET-024

2

- (e) The air standard efficiency of an Otto cycle is given by
 - (i) $1 \frac{1}{r^{(\gamma-1)}}$

(ii)
$$1 + \frac{1}{r^{(\gamma+1)}}$$

(iii)
$$1 - r^{(\gamma - 1)}$$

(iv)
$$1 + r^{(\gamma - 1)}$$

where r = compression ratio, $\gamma = C_p/C_v$.

(f) The gas law $(\frac{PV}{T} = \text{constant})$ is true for

- (i) Isothermal process
- (ii) Adiabatic process
- (iii) Both isothermal and adiabatic processes
- (iv) Neither isothermal nor adiabatic process
- (g) The actual power supplied by engine crank shaft is called
 - (i) Indicated power
 - (ii) Brake power
 - (iii) Frictional power
 - (iv) None of the above

P.T.O.

- (h) An electric kettle rated at 220 V, 2.2 kW, works for 3 hours. The current drawn will be
 - (i) 2 amp
 - (ii) 10 amp

(iii) 25 amp

(iv) 30 amp

(i) A wire of resistance R is cut into n equal parts. These parts are then connected in parallel. The equivalent resistance of the combination will be

The resistance of an ideal voltmeter is

- (i) nR
- (ii) R/n
- (iii) n/R
- (iv) R/n^2
- (j)
- (i) Zero
- (ii) Infinity
- (iii) 100 Ω
- (iv) 500 Ω
- (k) One ton of refrigeration is equal to
 - (i) 1000 kJ
 - (ii) 3.5 kW
 - (iii) 1 kW
 - (iv) 1000 kW

BET-024

4

(1) The appropriate material to be used in the construction of resistance boxes, out of the following, is

(i) Copper

- (ii) Iron
- (iii) Manganin
- (iv) Aluminium
- (m) Three resistances each of 4 Ω are connected to form a triangle. The resistance between any two terminals is
 - (i) 12Ω
 - (ii) 6 Ω
 - (iii) $\frac{8}{3}\Omega$
 - (iv) 2Ω
- (n) In a pure inductive circuit with a.c. source, the current lags behind the emf by
 - (i) π
 - (ii) 2π
 - (iii) π/2
 - (iv) $\pi/4$
- 2. Attempt any *two* of the following :

- 2×7=14
- (a) Explain briefly the simple vapour compression refrigeration system with the help of a neat diagram.

BET-024

5

- (b) 0.1 m^3 of air at a pressure of 1.5 kgf/cm^2 is expanded isothermally to 0.5 m^3 . Calculate the final pressure of the gas and heat supplied during the process. Also calculate the work done during the expansion of gas.
- (c) Explain with suitable sketches the working of a four-stroke Otto cycle engine.
- **3.** Attempt any *two* of the following :

 $2 \times 7 = 14$

- (a) Explain with a neat diagram the working of summer air-conditioning system.
- (b) A certain gas occupies a space of 0.3 m³ at a pressure of 2 kgf/cm² and a temperature of 77°C. It is heated at a constant volume, until the pressure is 7 kgf/cm². Determine the
 - (i) temperature at the end of the process,
 - (ii) mass of the gas,
 - (iii) change in internal energy, and
 - (iv) change in enthalpy.

Assume $C_n = 1.005 \text{ kJ/kg}^{\circ}\text{K}$,

 $C_v = 0.712 \text{ kJ/kg}^{\circ}\text{K}$ and $R = 287 \text{ J/kg}^{\circ}\text{K}$

(c) Discuss briefly the comparison between four-stroke and two-stroke engines.

BET-024

4. Answer any *two* of the following :

- (a) A resistance A of 3 ohms in parallel with B, produces a current of 3 Amperes when connected across a 6 V battery. Find
 - (i) the current in A and B,
 - (ii) the resistance of B.
 - (iii) What resistance X must be put in series with AB combination to reduce the current to 2 Amperes ?
- (b) State Faraday's law of electromagnetic induction.
- (c) Three capacitors of capacitance 10, 20 and 40 μ F are placed in series across a 350 V source. Determine the
 - (i) Equivalent capacitance of the combination,
 - (ii) Charge on each capacitor,
 - (iii) Voltage drop across each capacitor, and
 - (iv) Total stored energy.

5. Answer any *two* of the following :

- 2×7=14
- (a) Deduce the expression for the emf induced by the operation of a D.C. generator.

BET-024

P.T.O.

7

2×7=14

- (b) What emf will be generated in an 8-pole wave wound D.C. generator, if it is rotated at 500 RPM ? The flux per pole is 0.05 Weber and the number of armature conductors is 960.
- (c) Find the inductance of an inductor which draws a current of 1.1 A when connected to 230 V, 50 Hz voltage. What current will it draw, if the supply voltage is changed to 150 V, 25 Hz ?