00421

No. of Printed Pages: 6

BCE-046

DIPLOMA IN CIVIL ENGINEERING DCLE(G)

Term-End Examination

December, 2015

BCE-046 : SOIL MECHANICS AND FOUNDATION ENGINEERING

Time: 2 hours

Maximum Marks: 70

Note: Question no. 1 is **compulsory**. Attempt any **four** more questions from the remaining. All questions carry equal weightage.

1. Choose the correct alternative:

 $7 \times 2 = 14$

- (a) The particle size distribution of soil is carried out by the following test:
 - (i) Core Cutter method
 - (ii) Sieve Analysis
 - (iii) Pycnometer method
 - (iv) All of the above

- (b) Specific gravity of a soil sample is 2.60. If the void ratio of the soil is 0.30, the dry density of the soil will be
 - (i) 2.6 g/cc
 - (ii) 1.3 g/cc
 - (iii) 2 g/cc
 - (iv) 1 g/cc
- (c) Shear strength of the soil depends upon
 - (i) Cohesion
 - (ii) Angle of shearing resistance
 - (iii) Interlocking of particles
 - (iv) All of the above
- (d) The moisture absorbed by soil from atmosphere is called
 - (i) Hygroscopic water
 - (ii) Capillary water
 - (iii) Gravitational water
 - (iv) Structural water
- (e) Which of the following factors is **not** responsible for the change in permeability of the soil?
 - (i) Viscosity of water
 - (ii) Shape and size of particles
 - (iii) Temperature
 - (iv) None of the above

- (f) On increasing compactive effort, the maximum dry density of the soil
 - (i) decreases at slow rate
 - (ii) decreases at fast rate
 - (iii) increases
 - (iv) No change
- (g) At shrinkage limit the soil has the degree of saturation
 - (i) zero percent
 - (ii) 50%
 - (iii) 75%
 - (iv) 100%
- 2. (a) Using phase relationship, show that

$$\gamma_d = \frac{G \gamma_w}{1 + e}.$$

- (b) A soil sample has bulk density 16.97 kN/m³ and void ratio of 0.84. Determine the water content, dry density and degree of saturation of the sample, if the specific gravity of the soil particle is 2.70.
- 3. (a) What is the difference between consolidation and compaction? Discuss the factors affecting compaction.

7

(b) The following are the results of Proctor's compaction test performed on a soil sample:

Water content (%)	Bulk density (kN/m ³)
12.0	16.0
14.0	17.0
17.0	18-0
19.5	17.8
20.5	16.5

Draw the compaction curve and find OMC and MDD.

4. (a) For a stratified soil, how are the permeabilities determined in the direction of flow and perpendicular to the direction of flow? Write equations only.

(b) A constant head permeability test was carried out on a cylindrical sample of sand of diameter 100 mm and height 150 mm. 160 cc water was collected in 105 sec. under a constant head of 300 mm. Determine the coefficient of permeability.

7

7

7

5. ,	(a)	Explain the merits and demerits of direct	7
		shear test.	/
	(b)	In an unconfined compression test on a soft	
		clay, the following data was observed:	
		Length of the sample = 75 mm	
		Initial area of the sample = 1200 mm^2	
		Extension of spring at failure = 25 mm	
		Spring constant = 15 N/mm	
		Compression of sample at failure = 18 mm	1
		Determine the unconfined compressive	
	٠	strength of the soil sample using corrected area.	7
6.	(a)	Explain the geophysical methods of soil exploration.	7
	(b)	Write the equation for finding the bearing capacity of a shallow foundation given by Terzaghi. Mention the assumptions made.	7
7.	(a)	Explain the circumstances under which a Strap footing and a Raft footing are provided.	7
	(b)	A rectangular pile section, $0.6 \text{ m} \times 0.75 \text{ m}$ and length 12 m, penetrates a deposit of clay with $C = 42 \text{ kN/m}^2$. Assuming $m = 0.75$, find	
		the magnitude of skin friction.	7

- 8. Write short notes on any two of the following: $2\times7=14$
 - (a) Triaxial Shear Test
 - (b) Classification of Soils
 - (c) Permeability of Stratified Soil