No. of Printed Pages: 4

B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) BTCLEVI/BTMEVI/BTELVI/BTCSVI/BTECVI

Term-End Examination

01541

December, 2015

BME-009 : COMPUTER PROGRAMMING AND APPLICATIONS

Time : 3 hours

Maximum Marks : 70

- **Note:** Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted.
- 1. (a) (i) Round off the following numbers to two decimal places :
 48.21416, 2.3742, 52.275, 2.375, 2.385 and 81.255
 (ii) If u = 3v⁷ 6v, find the percentage error in u at v = 1, if the error in v is 0.005. 3+4
 (b) Compute the real root of the equation x³ 2x 5 = 0

by Regula-Falsi method, correct to four decimal places.

BME-009

7

- 2. (a) Find a real root of the equation $x = e^{-x}$, using the Newton-Raphson method, correct to three decimal places.
 - (b) Use the Bisection method to obtain a real root of the equation

 $x^3 - x^2 - 1 = 0$,

correct to three decimal places. 7+7

3. (a) Show that

$$\mu = \sqrt{1 + \frac{1}{4}\delta^2} \; .$$

(b) The population of a town in the decennial census was as given below. Estimate, by using Newton's difference interpolation formula, the population for the year 1895.

Year : x	Population : y (in thousands)		
1891	46		
1901	66		
1911	81		
1921	93		
1931	101		

7+7

4. (a) Using Lagrange's interpolation formula, find the form of the function y(x) from the following table. Also compute f(2.5).

x	0	1	3	4
у	- 12	0	12	24

 (b) Velocity of a car (running on a straight road) at intervals of 2 minutes is given below:

Time in minutes	0	2	4	6	8	10	12
Velocity in km/hr	0	22	30	27	18	7	0

Apply Simpson's $\frac{1}{3}$ rule to find the distance covered by the car. 7+7

5. (a) Solve the following equations by Gauss elimination method :

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16.

(b) Solve the following equations by Jacobi's method:

$$10x + 2y + z = 9$$

$$2x + 20y - 2z = -44$$

$$-2x + 3y + 10z = 22.$$

$$7+7$$

BME-009

P.T.O.

٩

- 6. (a) Write a C++ programme for solving the simultaneous equations by using Gauss-Seidel iteration method.
 - (b) Explain the concept of class and object with an example. 7+7
- 7. (a) Write a C++ programme to calculate the factorial n (i.e., n!).
 - (b) Write a C++ programme to find the roots of a quadratic equation. 7+7
- 8. (a) What is a friend function in C++? Explain the need of friend function with an example.
 - (b) (i) What will be the output produced by the following code ?

1,500

4