00088

No. of Printed Pages: 3

BIEL-017

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

December, 2015

BIEL-017 : OPTICAL FIBER COMMUNICATION

Time : 3 hours

Maximum Marks : 70

- **Note :** Attempt any **seven** questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume missing data, if any.
- 1. (a) Establish the relationship between the acceptance angle, numerical aperture and the refractive index for the fiber core and cladding.
 - (b) Compare the advantages and disadvantages of multimode step index fiber with respect to single mode step index fiber, when used as an optical channel.

BIEL-017

P.T.O.

4

6

1

2.	(a)	What is meant by a graded index optical fiber ? Derive an expression for the possible refractive index profile of a graded index fiber.	6
	(b)	Explain what is meant by critical bending radius for an optical fiber.	4
3.	(a)	Discuss absorption losses in optical fibers.	5
	(b)	Describe various linear scattering losses in optical fibers.	5
4.	(a)	What is meant by modal noise in optical fibers ? Suggest how it may be avoided.	6
	(b)	Explain fiber birefringence in single mode fibers.	4
5.	(a)	Discuss degradation mechanism in in injection lasers.	5
	(b)	Compare LEDs with injection laser as a source used in optical fiber communication.	5
6.	(a)	The carrier velocity in a silicon p-i-n photodiode with 25 μ m depletion layer width is 3×10^4 m/sec. Determine the maximum response time for the device.	4
	(b)	Compare the detection process of p-n diode with p-i-n diode.	6

1

a Text of the Text of

BIEL-017

2

- 7. (a) Define quantum efficiency and responsivity of a photodetector.
 - (b) Discuss briefly noise in Avalanche Photo Diode (APD) receiver.
- 8. An analog optical fiber system operating at a wavelength of 1 μ m has a post-detection bandwidth of 5 MHz. Assuming an ideal detector and considering only quantum noise on the signal, calculate the incident optical power necessary to achieve a signal-to-noise ratio (SNR) of 50 dB at the receiver.
- **9.** (a) Describe the advantages of optical fiber communication.
 - (b) What is Automatic Gain Control (AGC) equalisation ? Why is it required ?
- **10.** Write short notes on any *two* of the following: $2 \times 5 = 10$

3

- (a) Raman Scattering
- (b) Mie Scattering
- (c) Mode Hopping in Injection Lasers

BIEL-017

1,000

4

6

10

4

6