

No. of Printed Pages: 2

BIEL-016

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination December, 2015

BIEL-016: MICROWAVE AND RADAR ENGINEERING

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. Each question carries equal marks. Assume missing data, if any, suitably. Use of scientific calculator is allowed.

- 1. (a) With necessary equations, explain radiation loss and dielectric loss in a microstrip line.
 - (b) A certain microstrip line has the following parameters:

 $\varepsilon_r = 5.23$

h = 7 mils

t = 2.8 mils

w = 10 mils

Calculate the characteristic impedance Z_0 of the line.

2

8

2.	What is Scattering matrix? Formulate the S matrix for a two-port junction.	10
3.	Draw a neat block diagram for impedance measurement. Explain the procedure in detail.	10
4.	(a) What are the various power losses in waveguide?	5
	(b) Explain Attenuator and its types.	5
5.	Explain the bunching process in a two-cavity klystron, with relevant diagrams.	10
6.	Explain the construction and principle of operation of an IMPATT diode with a neat diagram.	10
7.	Explain the π -mode of oscillations in an 8-cavity magnetron, with relevant diagrams.	10
8.	With the help of a schematic block diagram, explain the Radar transmitter and receiver system. Derive the expression for Radar range equation.	10
9.	Describe Doppler effect and how it is utilised in CW radars. With the support of mathematical equations, explain the operating principle and working of an FM CW radar.	10
10.	Explain the construction and the principles of different types of microwave antennas with neat sketches.	10

 $\left(\frac{1}{2} + \frac{1}{2} + \frac{$