

No. of Printed Pages: 4

BIEL-006

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination December, 2015

BIEL-006: ELECTROMAGNETIC FIELD THEORY

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. All questions have same weightage (10 marks).

- (a) What are the fundamental properties of electromagnetic waves? Give the units for
 (i) Permeability, and (ii) Permittivity.
 - (b) $A = \hat{x} \hat{y} + 2\hat{z}$; $B = \hat{y} + \hat{z}$ and $C = -2\hat{x} + 3\hat{z}$. Find $A \times (B \times C)$ using dot product.
- 2. (a) Given point $P_1(3, -4, 3)$ and vector $A = 4\hat{x} 3\hat{y} + 4\hat{z}$ defined in Cartesian coordinates. Express P_1 and A in cylindrical coordinates and evaluate A at P_1 .

(b) Distinguish gradient, divergent and curl operators by giving their physical significance.

5

3. (a) State Stokes' theorem and complete the expression

 $\nabla \cdot (\nabla \times \mathbf{A}) = \underline{\hspace{1cm}}$.

Justify the answer with an example.

5

(b) Write Maxwell's equations and give their physical interpretations.

5

4. (a) A ring charge of radius b is characterised by a uniform charge density of positive polarity ρ_l, with the ring in free space and positioned in the X-Y plane. Determine the electric field intensity E at point P(0, 0, h) along the axis of the ring at a distance h from its centre.

5

(b) Derive Poisson's equation and give its one application. What gives rise to the conduction current in a conductor?

5

5. (a) Write the electric and magnetic boundary conditions for a surface interfacing two media with ϵ_1 , ϵ_2 and μ_1 , μ_1 as their standard meanings.

5

	(b)	State Biot-Savart law. What do you understand by vector magnetic potential? Give its unit.	5
6.	(a)	Draw a transmission line two-port network diagram and write the propagation modes existing in it with complete explanation.	5
	(b)	For a transmission line with characteristic impedance of 50 Ω and phase constant of 10 rad/m at 700 MHz, find the inductance per metre and the capacitance per metre of the line. Assume $R = G = 0$.	5
7.	(a)	Define Standing Wave Ratio and draw the voltage standing wave patterns for the following:	5
		(i) Matched load(ii) Short-circuited line(iii) Open-circuited line	
	(b)	Using equivalent circuit of a transmission line, derive the expressions for phase and attenuation constant.	5
8.	(a)	A 50 Ω transmission line is terminated in a load with $Z_L=100$ + j50 Ω . Find the voltage reflection coefficient and VSWR.	5
	(b)	What is the significance of a Smith chart? Write the centre and radius expressions for	-
		it.	5

3

P.T.O.

BIEL-006

9. (a) Define a waveguide. Draw a comparison between waveguides and 2-wire transmission lines.

5

(b) Determine the cut-off wavelength for the dominant mode in a rectangular waveguide of breadth 10 cm. For a 2.5 GHz signal propagated in this waveguide in the dominant mode, calculate the guide wavelength, the group velocity and the phase velocity.

5

- 10. Write short notes on any *two* of the following: $2\times5=10$
 - (a) Displacement Current
 - (b) Gauss's Law
 - (c) Cylindrical to Spherical Transformation