

No. of Printed Pages: 2

BIEL-003

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination December, 2015

BIEL-003: DIGITAL ELECTRONICS

Time: 3 hours		hours Maximum Marks : '	Maximum Marks: 70	
Note: Attempt any seven questions. All questions carry equal marks. Assume any missing data suitably.				
1.	(a)	State and prove De Morgan's Theorems.	5	
	(b)	Differentiate between ROM, PLA and PAL.	5	
2.	(a)	Write and explain excitation table for D flip-flop.	5	
	(b)	Design a half adder circuit using gates.	5	
3.	(a) (b)	Explain the concept of PAL. Design and explain 4-bit comparator.	5 5	
4.	(a) (b)	Realize the following function using $8:1$ multiplexer: $F(A,B,C,D) = \sum m \ (0,1,2,\ 3,11,12,14,15).$ Explain the Master-Slave JK flip-flop.	5	

5.	(a)	What is the difference between Encoders
		and Decoders?
	(b)	What is the race-around condition in
		JK flip-flop? How can it be overcome? 5
6.	(a)	What is the difference between Static RAM
		and Dynamic RAM?
	(b)	Explain the working of MOSFET as switch. 5
7.	(a)	Simplify the logic function using
		Quine-McCluskey method: 5
		$f(A, B, C, D) = \pi M (2, 7, 8, 9, 10, 11, 12).$
	(b)	Design a BCD to seven segment decoder using
	` ,	PROM. 5
8.	(a)	Explain the various specifications of digital
		ICs. 5
	(b)	Explain a ROM array and explain its working
		principle. 5
9.	Desig	gn a 3-bit up/down counter with a control
	•	. Use JK flip-flops. 10
10.	Write	e short notes on any two of the
	follov	ving: 2×5=10
	(a)	ASCII Code
	(b)	ALU
	(c)	PROM
	(d)	MOS as a switch