

No. of Printed Pages: 3

BICS-010

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination December, 2015

BICS-010 : FORMAL LANGUAGES AND AUTOMATA

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks.

1. (a) Construct a minimum state automaton equivalent to the following DFA:

5

State	a	b
\rightarrow q ₀	q_1	\mathtt{q}_2
q_1	$\mathbf{q_4}$	${f q_3}$
\mathtt{q}_2	q_4	\mathtt{q}_3
q_3	${f q_5}$	q_6
94	q ₇	\mathbf{q}_{6}
q_5	${f q}_3$	$\mathbf{q_6}$
q_6	q_6	q_6
q ₇	q_4	${f q}_6$

(b) Design a DFA accepting all strings over {a, b}, ending in ab.

5

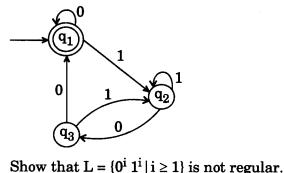
2. (a) Construct a DFA accepting all strings over {a, b} where number of a's is divisible by 3 and b's is divisible by 2.

5

(b) Construct a Mealy Machine which can output even, odd according to the total number of even or odd 1's encountered. The input symbols are 0 and 1.

3. (a) Define grammar and describe the Chomsky hierarchy of grammar.

5


5

(b) If $G = (\{S\}, \{0, 1\}, \{S \to 0S1, S \to \Lambda\}, S\}),$ find L(G).

5

4. (a) Construct a regular expression corresponding to the state diagram described by

5

- 5
- 5. (a) Find the regular expression representing

U

the set of all strings of the form $a^m b^{2n} c^{3p}$, where m, n, p ≥ 1 .

5

(b) Find a regular expression corresponding to each of the following subset of (a, b):

5

- (i) The set of all strings containing exactly two a's.
- 5
- (ii) The set of all strings containing the substring "aa".

(b)

6.	(a)	Convert the grammar $S \to AB$, $A \to BS \mid b$ $B \to SA \mid a$ into GNF.	5
	(b)	Define Decision algorithm for context free language.	5
7.	(a)	Convert the grammar $S \rightarrow aSb \mid A$, $A \rightarrow bSa \mid S \mid \land$ to a PDA that accepts the same language by empty stack.	5
	(b)	Construct a PDA accepting by empty store for the language $L = \{a^n b^{2n} n \geq 1\}.$	5
8.	(a)	Define the CYK algorithm.	5
	(b)	Define the Turing Machine Model.	5
9.	(a)	Design a Turing Machine for the language $L = \{w \subset w^T w \in (a, b)^*\}.$	5
	(b)	Define recursive enumerable language.	5
10.	Attempt any <i>two</i> from the following: $2 \times 5 = 10$		
	(a)	Define undecidable languages.	
	(b)	What is the description of a finite automata?	
	(c)	Define the procedure for transforming a Mealy Machine into a Moore Machine.	