00938

No. of Printed Pages : 3

BICS-009

B.Tech. – VIEP – COMPUTER SCIENCE AND ENGINEERING (BTCSVI) Term-End Examination

December, 2015

BICS-009 : LOGIC DESIGN

Time : 3 hours

Maximum Marks : 70

10

5

P.T.O.

Note : Attempt any **seven** questions. All questions carry equal marks.

1. Simplify the Boolean function :

 $F(w, x, y, z) = \sum (1, 3, 7, 11, 15)$

which has the don't care conditions :

 $d(w, x, y, z) = \sum (0, 2, 5).$

2. (a) Design a circuit to realize the following function :

$$\mathbf{F}(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{A}\mathbf{C}.$$
 5

 (b) Implement the following Boolean function using 8 : 1 MUX :
F(A, B, C, D) = Σ (1, 3, 4, 11, 12, 13, 14, 15). 5

3. (a) Write a short note on PAL and PLA. 5

(b) Explain the concept of parity generator and checker and their applications.

BICS-009

4.	(a)	Represent $(-17)_{10}$ in sign magnitude, one's	
		complement and two's complement representation.	5
	(b)	Explain the operation of ALU.	5
5.	(a)	Explain Schmitt trigger with its characteristics.	5
	(b)	What do you mean by universal register ? List the applications of shift register.	5
6.	(a)	Explain Master-Slave concept and discuss the complete functioning of MS-JK flip-flop.	5
	(b)	Design a 3-bit binary UP/Down counter with a direction control M using JK flip-flops.	5
7.	(a)	List and explain the specifications of D/A converters.	5
	(b)	Discuss the accuracy and resolution for A/D and D/A converters.	5
8.	Implement 3-bit odd parity generator using JK flip-flops with the help of a state diagram, state table, transition table and excitation table.		10
9.	(a)	Explain the concept of CMOS and also explain CMOS operating and performance characteristics.	5
	(b)	What are the merits and demerits of TTL ? Mention the name of TTL sub-families.	5
BICS-009		2	-

- **10.** Write short notes on any two of the following: $2 \times 5 = 10$
 - (a) Fast Adder
 - (b) Synchronous vs Asynchronous Counter
 - (c) Open Collector Gates