00818

No. of Printed Pages : 2

BICS-008

B.Tech. – VIEP – COMPUTER SCIENCE AND ENGINEERING (BTCSVI) Term-End Examination December, 2015

BICS-008 : DISCRETE MATHEMATICAL STRUCTURES

Time : 3 hours

Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks.

- 1. (a) Show that : $(A \times B) \times C \neq A \times (B \times C).$ 7
 - (b) Let R be a binary relation defined as

 $R = \{ (a, b) \in R^2 \mid a - b \le 3 \}.$

Determine whether R is reflexive, symmetric, or anti-symmetric.

- 2. (a) If in a group G, $a^5 = e$, $aba^{-1} = b^2$ for a, b \in G, find order(b).
 - (b) Prove that the product of disjoint cycles is commutative.

BICS-008

1

P.T.O.

7

7

7

3.	(a)	Every field is an integral domain, prove it.	7
	(b)	If R is a ring such that $a^2 = a$, $\forall a \in R$, then prove that (i) $a + a = 0 \forall a \in R$ (ii) $a + b = 0 \Rightarrow a = b$	7
4.	(a)	Construct the truth table for $(P \rightarrow Q) \land (Q \rightarrow R).$	7
	(b)	Prove that the pentagonal lattice is not modular.	7
5.	(a)	Show that $(P \lor Q) \land \neg Q \rightarrow P$ is a logical implication.	7
	(b)	Write the conjunctive normal form of the function $f(x, y, z) = (x + y) (x + z')$.	7
6.	(a)	Convert the DNF xyz + xy'z + x'yz' + xy'z' + x'y'z' into CNF.	7
	(b)	Simplify the Boolean function : $F(x, y, z, w) = \sum (0, 1, 2, 3, 13, 15).$	7
7.	(a)	Show that K_n has a Hamiltonian circuit whenever $n \ge 3$.	7
	(b)	Show that a simple graph G is a tree, iff there is one path between every pair of vertices.	7

1,000

2