00361

No. of Printed Pages : 2

B.Tech. CIVIL ENGINEERING (BTCLEVI) Term-End Examination December, 2015

BICE-022 : COMPUTER APPLICATIONS IN CIVIL ENGINEERING

Time : 3 hours

Maximum Marks: 70

Note :	Attemp	ot any s e	even	ques	tions.	All	questions	carry
	equal	marks.	Use	of	scien	tific	calculato	rs is
•	allowed.							

1.	(a)	Discuss the different types of errors in Numerical Methods.	5		
	(b)	Explain the 'pseudocode' and 'floating point numbers'.	5		
2.	Wha	t is the importance of optimization methods			
	in Ci	vil Engineering ? Explain with the help of a			
	suita	ble example.	10		
3.	Explain the following :				
	(a)	Trapezoidal Rule, and	5		
	(b)	Ill-conditioned system of equations.	5		
4.	(a)	Use the Newton-Raphson method to determine a root of the equation $x^3 - 2x - 5 = 0$, correct to three decimal places	5		
			U		
	(b)	Develop a computer algorithm for finding the roots of $f(x) = 0$, using the Bisection Method.	5		
BICE	E-022	1 P.T	.		

5. Solve the equations,

$$2x + 3y + z = 9$$

 $x + 2y + 3z = 6$
 $3x + y + 2z = 8$

by LU decomposition method.

- 6. Given the points (0, 0), $(\pi/2, 1)$ and $(\pi, 0)$ satisfying the function $y = \sin x$ $(0 \le x \le \pi)$, determine the value of $y(\pi/6)$, using cubic spline method. 10
- 7. (a) Explain Newton's Forward Interpolation formula for any function y = f(x). 5
 - (b) Define eigen values, eigen vectors and conditions of convergence.
- 8. Use Runge-Kutta method of fourth order to solve :

$$\frac{dy}{dx} = 1 + y^2 \text{ with } y(0) = 0 \text{ at } x = 0.2, 0.4 \text{ and } 0.6. \qquad 10$$

- 9. Explain the unconstrained optimization problem of non-linear programming. 10
- 10. Discuss the differences between linear and non-linear programming problems. 10

10

5