00261

No. of Printed Pages : 3

BICE-007

B.Tech. – VIEP – Computer Science & Engg. (BTCSVI) / B. Tech. Electronics and Communication Engg. (BTECVI) / B.Tech. Electrical Engg. (BTELVI)

Term-End Examination

December, 2015

BICE-007 : MATHEMATICS-III

Time : 3 hours

Maximum Marks : 70

- **Note :** Attempt only **two** parts from each question. All questions carry equal marks.
- 1. (a) Show that $f(z) = \overline{z}$ is not analytic at any point in the complex plane.
 - (b) Use Cauchy's integral formula to evaluate the integral.

$$\oint_C \frac{\mathrm{d}z}{z(z^2+4)}, |z| = 3.$$

(c)

Discuss the singularities of the function

$$f(z) = e^{1/z} + \frac{z}{z-1} + \frac{\sin z}{z}$$
. 7+7

2. (a) Discuss Moments, Skewness and Kurtosis.

BICE-007

1

(b) Find the best fit y = ax^b to the following data:

x :	50	70	100	120
у:	12	15	21	25

- (c) Find the probability of getting a king or a heart or a red card, if a card is drawn from a deck of 52 cards.
- 3. (a) Derive Poisson distribution as a limiting case of Binomial distribution.
 - (b) In a sample of 1000 people in Delhi, 540 are rice eaters and the rest are wheat eaters. Can we assume that both rice and wheat are equally popular in Delhi at 1% level of significance ?
 - (c) If X is a normal variate with mean 30 and S.D. 5, find the probabilities that
 - (i) $26 \le X \le 40$,
 - (ii) |X 30| > 5.
- 4. (a) Using Regula-Falsi's method, find a real root of log $x \cos x = 0$, correct to four decimal places.
 - (b) Show that Newton-Raphson's method has quadratic convergence.
 - (c) Find Lagrange's interpolating polynomial for (0, 2), (1, 3), (2, 12) and (5, 147). 7+7

BICE-007

7+7

5. (a) Use Crout's method to solve
x + 2y + 3z = 1, 3x + y + z = 0, 2x + y + z = 0.

(b) Evaluate
$$\int_{0}^{1} \frac{1}{1+x^2} dx$$
 by using Simpson's $1/3^{rd}$ rule.

(c) Apply Runge-Kutta's method of fourth order to determine y(0.3) from

 $\frac{dy}{dx} = xy + y^2, \ y(0) = 1.$

Take step size h = 0.1.

7+7