00171

No. of Printed Pages : 3

BASE-005

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

December, 2015

BASE-005 : INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

Time : 3 hours

Maximum Marks : 70

Note :	Answei	r any se	ven	quest	ions.	All	questions	car	·ry
	equal	marks.	Use	of	scier	ntific	calculat	or	is
	permit								

1. (a)	What is CFD ? List out the important applications of CFD.	5
(b)	Derive the continuity equation for an inviscid flow in partial differential non-conservation form.	5
2. (a)	What is the source of errors in CFD Analysis? How can it be minimized?	5
(b)	Obtain the CFL condition for Lax Method of discretization of first order wave equation.	5
3. (a)	List out the advantages and limitations of Panel method.	5
(a)	Explain the various computer graphic techniques used in CFD.	5
BASE-00	95 1 P.T.	О.

4.	(a) Discuss in detail about shock capturing and	
	shock fitting methods.	5
	(b) List out the differences between Finite volume and Finite difference methods.	5
5.	Derive the Navier-Stokes equation in conservation form.	10
6.	How do you determine the accuracy of discretization process ? What are the uses and difficulties of approximating the derivatives with higher order finite difference schemes ? How do you overcome these difficulties ?	10
7.	 (a) What are the different categories of boundary conditions ? Give examples of each category. 	5
	(b) What is the importance of CFL condition ? Explain.	5
8.	Explain the need for turbulence modeling in dealing with CFD problems. What are the various turbulence models used in CFD problems?	10
9.	What is the Finite Element Method (FEM) ?	

Explain why should one use it. 10

BASE-005

2

10. Write short notes on the following :

- (a) Galerkin Formulation
- (b) Weighted Residual Formulation
- (c) Consistency
- (d) Convergence
- (e) Degree of Freedom