00301

No. of Printed Pages : 2

BASE-003

B.Tech. AEROSPACE ENGINEERING (BTAE) Term-End Examination December, 2015

BASE-003 : HIGH SPEED AERODYNAMICS

Time : 3 hours

Maximum Marks : 70

Note : Attempt any **seven** questions. Each question carries equal marks.

1.	Explain with neat sketches how shock waves are produced in supersonic flow.	10
2.	Explain briefly flow past unswept airfoils at transonic speed.	10
3.	Derive the linearized potential flow equation for supersonic flow using small perturbation theory.	10
4.	Derive the Prandtl-Glauert relationship for two-dimensional subsonic flow.	10
5.	Discuss the linearized and exact two-dimensional supersonic flow theory in detail.	10

BASE-003

P.T.O.

1

- 6. (a) State the area rule.
 - (b) What is the relationship between internal energy and entropy? 5+5=10
- Explain the significance of centre of pressure in supersonic profiles. 10
- 8. Briefly explain any *two* of the following : 5+5=10
 - (a) Drag
 - (b) Lift
 - (c) Nozzle

9. Show that
$$M^2 = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{\gamma M_1^2 - \frac{\gamma - 1}{2}},$$

where the symbols have their usual meaning. 10

- **10.** Write short notes on any *four* of the following: $4 \times 2 \frac{1}{2} = 10$
 - (a) Mach Angle
 - (b) Sweepback
 - (c) Pitching Moment
 - (d) Forward Swept Wing
 - (e) Transonic Flow
 - (f) Adiabatic Flow

BASE-003

500

2