

No. of Printed Pages: 3

BAS-016

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination December, 2015

BAS-016: PROPULSION - II

Time: 3 hours		hours Maximum Marks :	Maximum Marks : 70	
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted. Use of Steam table and Mollier chart is allowed.			is	
1.	(a)	Discuss the aerodynamic design process of axial flow compressor.	7	
	(b)	Explain the working principle of Ramjet engine, with the help of a neat diagram.	7	
2.	(a)	Describe the ignition system of a jet engine, with a neat sketch.	7	
	(b)	Explain the principle of jet propulsion. Describe how the jet propulsion engines are classified.	7	
3.	(a)	What is meant by thrust? Derive the expression of thrust for a general propulsion system.	7	

(b) Prove that for a one-dimensional steady isentropic flow through nozzle

7

7

7

14

$$\frac{dA}{A} = (M^2 - 1) \frac{dV}{V},$$

where symbols carry usual meaning.

- 4. (a) Explain the characteristics of a good fuel of a jet engine.
 - (b) Derive an expression for C_L and C_D with and without friction in case of axial compressor.
- **5.** An axial compressor stage has the following data:

Degree of reaction: 50%, mean blade dia: 36 cm, rotational speed: 18000 rpm, blade height at entry: 6 cm, air angles at rotor and stator exit: 25°, axial velocity: 180 m/s, work done factor: 0.88, stage efficiency: 0.85, mechanical efficiency: 96.7%.

Determine:

- (a) Air angles at rotor and stator entry
- (b) Mass flow rate
- (c) Power required
- (d) Stage loading coefficient
- (e) Pressure ratio developed by stage
- (f) Relative Mach number at rotor entry

2

A turbojet is flying with a velocity of 320 m/s at 6. an altitude of 9150 m, where the ambient conditions are 32 kPa and - 32°C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1400 K. Air enters the compressor at a rate of 40 kg/s, and the jet fuel has a heating value of 42,700 kJ/kg. Assuming ideal operation for all components and specific heats for air at room constant temperature, determine:

14

- (a) the temperature and pressure at inlet turbine exit,
- (b) the velocity of the exhaust gases,
- (c) the propulsive power developed,
- (d) the propulsive efficiency, and
- (e) the rate of fuel consumption.

7. Write short notes on any four of following:

14

- (a) Air cooling system
- (b) Turbojet with after burner
- (c) Diffuser in subsonic flow
- (d) Fuel injection system
- (e) Pollution in combustion system
- (f) Knocking