00131

No. of Printed Pages : 3

BAS-012

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

December, 2015

BAS-012 : AERODYNAMICS - I

Time : 3 hours

Maximum Marks : 70

Note : Attempt any **seven** questions. All questions carry equal marks.

1.	(a)	How are the boundary conditions and initial conditions applied to nozzle flow ?	6
	(b)	Explain the steady boundary layer flows over a body.	4
2.	(a)	Differentiate between compressible and incompressible flows.	4
	(b)	Derive the momentum equation for 2-D subsonic and supersonic flow through a C-D nozzle.	6
3.	(a)	Draw the propagation of disturbance waves for subsonic and supersonic conditions.	4
	(b)	Draw the pitching moment curve for supersonic profiles. How do pitching moment and centre of pressure vary with angle of attack for a supersonic profile ?	6

BAS-012

P.T.O.

4. Answer any *five* of the following questions in brief: $5 \times 2=10$

- (a) Distinguish between Real and Ideal fluid.
- (b) What is conformal transformation ?
- (c) State the condition for irrotationality of flow.
- (d) Enumerate the application of thin airfoil theory.
- (e) State Kutta-Joukowski theorem.
- (f) Define doublet. Draw its streamline.
- (g) What is meant by Washin and Washout for wings?
- (h) Explain starting vortex.
- 5. (a) Derive the fundamental equation for thin airfoil theory and give the assumptions that are made in the airfoil theory.
 - (b) Define angular velocity, strain rate and vorticity of a fluid element.
- 6. (a) Explain the types of drag produced due to the effects of viscosity. Derive Navier-Stokes equations for an unsteady, compressible three-dimensional viscous flow.
 - (b) How are streamlines and equipotential lines related to each other ?

6

4

6

4

BAS-012

2

- 7. (a) Derive continuity equation in 3D Cartesian coordinates.
 - (b) Draw a neat sketch of a hypersonic wind tunnel circuit and explain the function of each component.
- 8. (a) Derive the expressions for stream function and velocity potential function. Explain source, sink, free and forced vortex with neat sketches.
 - (b) What is the principle of operation of a typical shock tunnel?
- **9.** Write short notes on any *two* of the following: $2 \times 5 = 10$
 - (a) Wake
 - (b) Centre of Pressure
 - (c) Stall Condition
 - (d) Velocity Potential

500

4

6

6

4

3