MCA (Revised)

Term-End Examination
 December, 2015

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time: 2 hours

Maximum Marks : 50

Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Define regular graph. Find the number of edges of a 4-regular graph with 6 vertices.
(b) Find the order of the following recurrences and state whether they are homogeneous or non-homogeneous :
(i) $\mathrm{x}_{\mathrm{n}+1}+2 \mathrm{x}_{\mathrm{n}}-15 \mathrm{x}_{\mathrm{n}-1}=0$
(ii) $3 \mathrm{x}_{\mathrm{n}+1}-7 \mathrm{x}_{\mathrm{n}}+4 \mathrm{x}_{\mathrm{n}-1}=3+2 \mathrm{n}$
(c) Solve the recurrence relation
$\mathrm{x}_{\mathrm{n}+1}-8 \mathrm{x}_{\mathrm{n}}+15 \mathrm{x}_{\mathrm{n}-1}=0$, where $\mathrm{x}_{0}=5$ and $\mathrm{x}_{1}=21$.
(d) Find the generating function for the sequence $0,1,-2,3,-4$.
(e) Determine whether the sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation

$$
\begin{equation*}
a_{n}=a_{n-1}+2 a_{n-2}+2 n-9, \text { if } a_{n}=-n+2 . \tag{3}
\end{equation*}
$$

(f) Is a Hamiltonian graph Eulerian ? Is a Eulerian graph Hamiltonian? Show with the help of a suitable example.
2. (a) Solve $a_{n+1}=5 a_{n}$ for $n \geq 0, a_{0}=2$ by Substitution method.
(b) Solve the recurrence
$\mathrm{a}_{\mathrm{n}}-7 \mathrm{a}_{\mathrm{n}-1}+10 \mathrm{a}_{\mathrm{n}-2}=0, \mathrm{n} \geq 2$
by Characteristic root method.
3. (a) Solve the recurrence by using iterative approach :

$$
a_{n}=a_{n-1}+2 n+3, a_{0}=4
$$

(b) Find the sequence $\left\{a_{n}\right\}$ having the generating function G given by

$$
G(x)=\frac{3}{1-x}+\frac{1}{1-2 x} .
$$

(c) Define isomorphic graph. Give an example of the same.
4. (a) State Euler's formula for the graph.
(b) For the following graph G,

MCS-033
draw subgraphs
(i) G-e
(ii) $\mathbf{G}-\mathbf{a}$
(c) Is a subgraph of a planar graph, planar? Justify your answer.
5. (a) Solve $a_{n}=4\left(a_{n-1}-a_{n-2}\right)$ with initial condition $a_{0}=1, a_{1}=1$. 4
(b) For which value of m and n is $K_{m, n}$
a tree?
(c) Show that C_{6} is a bipartite graph. 3

