MCA（Revised）

Term－End Examination
December， 2015

MCS－031 ：DESIGN AND ANALYSIS OF ALGORITHMS

Time： 3 hours
Maximum Marks ： 100
Note：Question no． 1 is compulsory．Attempt any three questions from the rest．

1．（a）Write recursive binary search algorithm and analyse its run time complexity．
（b）Solve the recurrence ：

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} ; \mathrm{n} \geq 2 \\
& =1 ; \mathrm{n}<2 .
\end{aligned}
$$

（c）Using Dijkstra＇s algorithm，find the minimum distances of all the nodes from source node＇a＇for the following graph ：

(d) Construct a Turing Machine (TM) to accept all languages of palindromes on alphabet $\Sigma=(\mathrm{a}, \mathrm{b})$.
(e) Explain matrix multiplication using dynamic programming. 10
(f) What is minimax principle? Explain with the help of an example.
2. (a) Obtain the minimum cost spanning tree for the following graph using Prim's algorithm.

(b) Obtain the DFS tree for the graph given in Q.no. 2(a); considering node (a) as root node.
(c) Explain the Chomsky's classification of grammars.
3. (a) Enumerate any five well-known techniques for designing algorithms for solving problems.
(b) Sort the following elements using Heap Sort :

$$
10,28,46,39,15,12,18,9,56,2 .
$$

Show each step, while creating a heap and processing a heap.

8
(c) For any set S of strings prove that $S^{*}=\left(S^{*}\right)^{*}=S^{* *}$.
4. (a) Arrange the following growth rates in increasing order :
$O\left(n^{3}\right), O\left(3^{n}\right), O(n \log n), O(1), O(\log n)$.
(b) For the function

$$
f(x)=4 x^{3}+6 x+5
$$

show that (i) $f(x)=O\left(x^{4}\right)$

$$
\text { but }(\text { ii }) \mathrm{x}^{4} \neq \mathrm{O}(\mathrm{f}(\mathrm{x}))
$$

(c) What is Pushdown Automata (PDA) ? Build a PDA that accepts the language even palindrome.
5. (a) What is Satisfiability problem ? Explain briefly.
(b) Prove that the running time of binary search algorithm in worst case is $\mathrm{O}\left(\log _{2} \mathrm{n}\right)$.
(c) Using Bubble Sort, sort the following sequence in increasing order :

$$
11,21,6,14,8,12,28,32 .
$$

(d) Write a note on regular languages.

