MCA (Revised) / BCA (Revised)
Term-End Examination
December, 2015
MCS-012 : COMPUTER ORGANISATION AND ASSEMBLY LANGUAGE PROGRAMMING

Time: 3 hours
Maximum Marks : 100
(Weightage 75\%)
Note: Question number 1 is compulsory and carries 40 marks. Attempt any three questions from the rest.

1. (a) IEEE floating point representation for single precision number uses the format as:

Sign bit (1 bit) Biased exponent (8 bits) Significant (23 bits)
In this representation a floating point number where $0<\mathrm{E}<255$ having any significant bits is equivalent to $\pm(1 . \mathrm{N}) 2^{(\mathrm{E}-127)}$. Using this format represent the following decimal numbers :
(i) 0.375
(ii) 7

Now using the representation perform the following operations :
(i) 0.250×7
(ii) $0.375+7$
(b) Simplify the following using Karnaugh's map:

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,3,5,8,10,13)
$$

(c) Write an assembly language program to find the maximum in a group of 10 numbers stored in memory. Store the result in AL register.
(d) What is RAID ? List three features of RAID level 3.
(e) How is a main memory address mapped to a cache address ? Assume the main memory size of 1 K words.
1 cache block size $=32$ bits
No. of cache slots = 16
Cache mapping $=2$ way set associative
(f) Explain the use of PC, IR, AC, MBR registers of a computer system.
(g) Consider Registers R_{1} and R_{2} containing

$$
\begin{aligned}
& R_{1}=10100000 \\
& R_{2}=01101100
\end{aligned}
$$

Perform the following microoperations using these registers :
(i) $\mathrm{R}_{1} \leftarrow \mathrm{R}_{1}+\mathrm{R}_{2}$
(ii) Shift Left R_{1}
(iii) $\mathrm{R}_{1} \leftarrow \mathrm{R}_{1}$ XOR R_{2}
(iv) $R_{1} \leftarrow R_{1}-1$
2. (a) Explain using a flowchart the steps of an instruction execution.
(b) How many RAM chips of size $256 \mathrm{k} \times 1$ bit are required to build 1 MB of memory?
(c) Explain the various displacement addressing schemes with the help of an example each.
(d) Calculate the physical address for the following register offset pairs :
(i) $\mathrm{SS}: \mathrm{SP}=0100 \mathrm{~h}: 0020 \mathrm{~h}$
(ii) $\mathrm{DS}: \mathrm{BX}=0200 \mathrm{~h}: 0100 \mathrm{~h}$
(iii) $\mathrm{CS}: \mathrm{IP}=4200 \mathrm{~h}: 0123 \mathrm{~h}$
(iv) $\mathrm{ES}: \mathrm{SI}=0300 \mathrm{~h}: 0245 \mathrm{~h}$
3. (a) Explain the use of parity bit in error detection with the help of an example using odd parity scheme.
(b) Compare the following: 9
(i) CD-ROM and DVD-ROM
(ii) SRAM and DRAM
(iii) Memory mapped I/O and Isolated mapped I/O
(c) Explain the following 8086 instructions :
(i) XCHG
(ii) XLAT
4. (a) What is a Multiplexer ? Give block diagram, truth table and logic diagram of a 4×1 multiplexer.
(b) Explain any three techniques of identifying the device that has caused the interrupt.6
(c) Write a program in 8086 Assembly language for displaying the contents of CL register.
5. Explain the following with the help of an example or diagram for each : $5 \times 4=20$
(a) T flip-flop
(b) DMA
(c) COM programs
(d) The stack
(e) LCD

