No. of Printed Pages : 3

 $\operatorname{ges}: 3 \quad \Box \mathbf{3} \mathbf{5} \mathbf{\Box} \mathbf{4} \quad \operatorname{CS-73}$

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

December, 2015

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hours

Maximum Marks: 75

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1.	(a)	Give the regular expression for the strings $\{a, a^4, a^7 \dots\}$.	2
	(b)	List three applications of regular expressions.	3
	(c)	Describe briefly the Deterministic Turing Machine.	5
	(d)	Tabulate the Chomsky hierarchy of grammar with an example.	5
	(e)	Convert the following regular expression into an FA :	5
		(aa)* (bb)*	
	(f)	Using parse tree, verify whether the given grammar is ambiguous or not.	5
		$S \rightarrow aS \mid aSb \mid X$	
		$X \rightarrow Xa \mid a$	
I	(g)	Show that if L is a regular language, then \overline{L} is also regular.	5
CS-7	3	1 РТ	. –

P.T.O.

2. (a) Derive the equivalent FA from the following NFA :

5

5

(b) Convert the following regular expression into an FA :

ab* (ab)* a*

- (c) Give a regular expression for all strings that have no two consecutive a's. 5
- 3. (a) Show that the language

 L = { bⁿ aⁿ b : n ≥ 0 } is not regular.

 (b) Design a Turing Machine which accepts all the strings of the language

 L(m) = { aⁿ bⁿ cⁿ : n ≥ 1 }.
 - (c) Explain the Non-Deterministic Turing Machine, with an example. 5
- 4. (a) Construct a PDA to accept $L = \{ w \subset w^{R} \mid w \in (0 + 1)^{*} \},$ where w^R means Reversed w. 5
 - (b) Show that the language $L = \{ a^n b^n a^n : n \ge 1 \}$ is not context free. 5

CS-73

2

(c) Show that the following function

$$eq(m, n) = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{else} \end{cases}$$

is primitive recursive.

5. (a) Show that the blank tape halting problem is undecidable.

(b) If $f(x) = 2x^3 + 3x^2 + 1$, then show that

nen snow that

$$\mathbf{x}^{3} = \mathbf{O}(\mathbf{f}(\mathbf{x}))$$

and also

$$\mathbf{x}^4 = \mathbf{O}(\mathbf{f}(\mathbf{x})).$$

(c) Show that the Travelling Salesman problem is NP complete.

4

6

5