BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination
December, 2015

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 hours

Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt any three questions from questions number 2 to 5. Scientific calculator is permitted.

1. (a) What is meant by absolute and relative errors ? Explain each with suitable example.
(b) Find the approximate value, correct to three decimal places, of the real root which lies between -2 and -3 of the equation

$$
x^{3}-3 x+4=0
$$

using the method of Regula-Falsi.
(c) Find a real root of the equation $x^{3}-2 x-5=0$, by using the method of Bisection, correct to three decimal places.
(d) Find a real root of the equation $x^{3}-3 x-5=0$ by using the method of Regula-Falsi, correct to three decimal places.
(e) Find a real root of the equation $x \sin x+\cos x=0$ by using the method of Newton-Raphson, correct to three decimal places.
(f) Show that $a(b-c) \neq a b-a c$, where $\mathrm{a}=0.5555 \times 10^{1}, \mathrm{~b}=0.4545 \times 10^{1}$ and $\mathrm{c}=0.4535 \times 10^{1}$.
2. (a) Find a real root of the equation $x^{3}+x-1=0$ by using the method of Bisection, correct to three decimal places.
(b) Compute a root of the equation $x^{2}-3 x+2$ lying between 0 and 1.5 by using the method of Newton-Raphson, correct to three decimal places.
(c) In the table below, the values of y are consecutive terms of a series of which the number 21.6 is the $6^{\text {th }}$ term. Compute the tenth term of the series by the method of Newton's interpolation formula.

x	3	4	5	6	7	8	9
y	$2 \cdot 7$	$6 \cdot 4$	$12 \cdot 5$	$21 \cdot 6$	$34 \cdot 3$	$51 \cdot 2$	$72 \cdot 9$

3. (a) Using Lagrange's interpolation formula, find the form of the function $f(x)$ from the following table. Hence compute f(2•5).

x	2	3	4
$f(x)$	11	49	123

(b) Given $\frac{d y}{d x}=\frac{y-x}{y+x}$, with $y=1$ for $x=0$.

Find y approximately for $\mathrm{x}=0.1$ by Euler's method (five steps).
(c) If $f(x)=\frac{1}{x}$, then show that

$$
f[a, b, c, d]=\frac{1}{a b c d}
$$

4. (a) Solve the following system of equations by Cramer's rule :

$$
\begin{aligned}
& 2 x+y+z=7 \\
& 3 x+2 y+3 z=16 \\
& x+4 y+9 z=36
\end{aligned}
$$

(b) Solve the following system of equations by Gauss-Elimination method:

$$
\begin{aligned}
& 10 x_{1}+x_{2}+x_{3}=6 \\
& x_{1}+10 x_{2}+x_{3}=6 \\
& x_{1}+x_{2}+10 x_{3}=6
\end{aligned}
$$

(c) Solve the following system of equations by Gauss-Seidel Iteration :

$$
\begin{aligned}
& x_{1}+9 x_{2}-2 x_{3}=36 \\
& 2 x_{1}-x_{2}+8 x_{3}=121 \\
& 6 x_{1}+x_{2}+x_{3}=107
\end{aligned}
$$

5. (a) Find an approximate value of the root of the equation

$$
x^{3}+x-1=0 \quad \text { near } \quad x=1
$$

using the method of Regula-Falsi, correct to three decimal places.
(b) The velocities of a car (running on a straight road) at intervals of 2 minutes are given below :

Time in minutes	0	2	4	6	8	10	12
Velocity in $\mathrm{km} / \mathrm{hr}$	0	22	30	27	18	7	0

Apply Simpson's $\frac{1}{3}$ rd rule to find the distance covered by the car.
(c) Use the Runge-Kutta fourth order method to find the value of y
when $x=0 \cdot 2$, given that $y=1$ when $x=0$.
Given that

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}} \tag{5}
\end{equation*}
$$

