04294

No. of Printed Pages: 4

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

December, 2015

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time : 3 hours

Maximum Marks : 75

CS-60

- Note: Question no. 1 is compulsory. Attempt any three questions from question no. 2 to 6. Use of calculator is permitted.
- 1. (a) Find the modulus and argument of $\frac{1+i}{7+24i}$. 15×3=45
 - (b) Evaluate : $\int \cos x \, dx$
 - (c) If G and H are the geometric and harmonic means between two positive numbers, prove that G > H.

(e) Find
$$\frac{dy}{dx}$$
, when $y = 3x + 2$.

CS-60

1

- (f) Obtain the equation of the straight line passing through the origin and perpendicular to 3x + 4y = 5.
- (g) Find the equation of the circle whose centre is (1, 2) and radius is 5.
- (h) Find the equation of the parabola whose focus is at (a, 0) and whose directrix is x + a = 0.
- (i) Find the eccentricity of the ellipse : $3x^2 + 4y^2 = 12.$
- (j) Find the angle between the pair of straight lines represented by $2x^2 - xy - y^2 = 0$.
- (k) Determine

$$\int_{0}^{\pi} \sin 3x \, dx.$$

(l) Determine.

$$\operatorname{Lt}_{\theta \to 0} \frac{1 - \cos \theta}{\theta^2}.$$

- (m) Prove with symbols having usual meaning, that $A \cup \phi = A$.
- (n) Examine whether or not the function $f: R \to R$ defined by $f(x) = x^2 \quad \forall x \in R$ is one-one.
- (o) Prove that $f(x) = \tan 3x$ is a periodic function. Find the period.

CS-60

2. (a) Solve using Cramer's Rule :
 x - y = 1, 2x + 3y = 12.

(b) Solve the equation :

$$2x^2 - 3x + 1 = 0.$$

(c) Use De Moivre's Theorem to find the values of cos 30 and sin 30.

- 3. (a) If the sum of two positive numbers is fixed, prove that their product is greatest when they are equal.
 - (b) Find the equation of the straight line passing through the origin and the point (1, 1).
 - (c) Show that the straight line 4x + 3y 31 = 0touches the circle, $x^2 + y^2 - 6x + 4y - 12 = 0$ and find the point of contact.

4. (a) Find the condition that y = mx + c is a tangent to the parabola $y^2 = 4ax$. 4

(b) Find the equation to the normal at the point (x_1, y_1) to the circle, $x^2 + y^2 = a^2$.

(c) Convert the equation : $x^2 + y^2 = 4y$ into polar form. 2

CS-60

P.T.O.

3

2

4

4

3

3

4

4

5. (a) Prove that $\sin x$ is a continuous function in the range, $0 < x < \pi$.

(b) Differentiate $\sin^{-1} \frac{2x}{1+x^2}$ with respect to

$$\cos^{-1} \frac{1-x^2}{1+x^2}.$$

(c) Evaluate:

$$\int x^2 dx.$$

- 6. (a) Show that the triangle formed by the points A(3, 5, -4); B(-1, 1, 2) and C(-5, -5, -2) is isosceles.
 - (b) Show that the points A(-2, 0, 3); B(3, 10, -7) and C(1, 6, -3) are collinear.
 - (c) Find the equation of the sphere with centre at (2, -2, 3) and passing through (7, -3, 5).

CS-60

5,000

3

3

4

3

4

3