BACHELOR OF COMPUTER APPLICATIONS
 (BCA) (Revised)

Term-End Examination

December, 2015

BCS-012 : BASIC MATHEMATICS

Time : 3 hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. Attempt any eight parts from the following :
(a) Show that
$\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & 0\end{array}\right|=0$
where ω is a complex cube root of unity.
(b) If $A=\left(\begin{array}{cc}3 & -1 \\ 2 & 1\end{array}\right)$,
show that $A^{2}-4 A+5 I_{2}=0$.
Also, find A^{4}.
(c) Show that 133 divides $11^{\mathrm{n}+2}+12^{2 \mathrm{n}+1}$ for every natural number n.
(d) If $p^{\text {th }}$ term of an A.P is q and $q^{\text {th }}$ term of the A.P. is p, find its $r^{\text {th }}$ term.
(e) If $1, \omega, \omega^{2}$ are cube roots of unity, show that $(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{19}\right)\left(2-\omega^{23}\right)=49$.
(f) If α, β are roots of $x^{2}-3 a x+a^{2}=0$, find the values) of a if $\alpha^{2}+\beta^{2}=\frac{7}{4}$.
(g) If $\mathrm{y}=\ln \left(\frac{\sqrt{1+\mathrm{x}}-\sqrt{1-\mathrm{x}}}{\sqrt{1+\mathrm{x}}+\sqrt{1-\mathrm{x}}}\right)$, find $\frac{\mathrm{dy}}{\mathrm{dx}}$.
(h) Evaluate :

$$
\int \mathrm{x}^{2} \sqrt{5 \mathrm{x}-3} \mathrm{dx}
$$

2. (a) If $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ 1 & 0 & 3 \\ 3 & 0 & -1\end{array}\right]$, show that $\mathrm{A}(\mathrm{adj} . \mathrm{A})=|\mathrm{A}| \mathrm{I}_{3}$.
(b) If $A=\left[\begin{array}{ccc}2 & -1 & 7 \\ 3 & 5 & 2 \\ 1 & 1 & 3\end{array}\right]$, show that A is row equivalent to I_{3}.
(c) If $\mathrm{A}=\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right)$,
$B=\left(\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right)$, show that
$A B=6 I_{3}$. Use it to solve the system of linear equations $\mathrm{x}-\mathrm{y}=3,2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}=17$, $y+2 z=7$.
3. (a) Find the sum of all the integers between 100 and 1000 that are divisible by 9.
(b) Use De Moivre's theorem to find $(\sqrt{3}+\mathrm{i})^{3}$. 5
(c) Solve the equation

$$
x^{3}-13 x^{2}+15 x+189=0
$$

given that one of the roots exceeds the other by 2 .
(d) Solve the inequality

$$
\frac{2}{|x-1|}>5
$$

and graph its solution.
4. (a) Determine the values of x for which $f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x+21$ is increasing and for which it is decreasing.
(b) Find the points of local maxima and local minima of

$$
f(x)=x^{3}-6 x^{2}+9 x+2014, x \in \mathbf{R} .
$$

(c) Evaluate :

$$
\int \frac{d x}{\left(e^{x}-1\right)^{2}}
$$

(d) Using integration, find length of the curve $y=3-x$ from $(-1,4)$ to $(3,0)$.
5. (a) Show that

$$
\left[\begin{array}{lll}
\vec{a}-\vec{b} & \vec{b}-\vec{c} & \vec{c}-\vec{a} \tag{5}
\end{array}\right]=0
$$

(b) Show that the lines

$$
\frac{x-5}{4}=\frac{y-7}{-4}=\frac{z-3}{-5} \text { and } \frac{x-8}{4}=\frac{y-4}{-4}=\frac{z-5}{4}
$$

intersect.
(c) A tailor needs at least 40 large buttons and 60 small buttons. In the market, buttons are available in two boxes or cards. A box contains 6 large and 2 small buttons and a card contains 2 large and 4 small buttons. If the cost of a box is ₹ 3 and cost of a card is ₹ 2 , find how many boxes and cards should be purchased so as to minimize the expenditure.

