M.Tech. IN ADVANCED INFORMATION **TECHNOLOGY - NETWORKING AND TELECOMMUNICATION (MTECHTC)**

Term-End Examination 00107

December, 2015

MINI-019 : STATISTICAL SIGNAL ANALYSIS

Time : 3 hours		Maximum Marks : 100
Note :	<i>(i)</i>	Section - I is compulsory. Section - I carries
		30 marks.
	(ii)	Section - II Answer any five questions.
		Section - II carries 70 marks.
	(iii)	Assume suitable data wherever required.
	(iv)	Draw suitable sketches wherever required.
	(v)	Figures to the right indicate maximum marks.

SECTION - I

10x3 = 30

- What are the elementary properties of 1. (a) probability ?
 - Consider an experiment of drawing two (b) cards at random from a bag containing four cards marked with the integers 1 through 4.
 - Find the sample space S, of the (i) experiment if the first card is replaced before the second is drawn.

MINI-019

P.T.O.

- (ii) Find the sample space S, of the experiment if the first card is not replaced.
- (c) State the Baye's theorem of conditional probability.
- (d) A lot contains 100 semiconductor chips, out of these 20 are defective. Two chips are selected randomly, without replacement, from the lot.
 - (i) What is the probability that the first one selected is defective ?
 - (ii) What is the probability that the second one selected is defective given that the first one was defective ?
 - (iii) What is the probability that both are defective ?
- (e) Define discrete random variable and probability mass function.
- (f) What is random process, describe it in detail ?
- (g) Define and explain Markov process.
- (h) Define the power spectral density. What are the various properties of it ?
- (i) List out four types of estimations.
- (j) Explain the M/M/l queuing system.

MINI-019

2. Consider the switching networks shown in figure 14 (a) - (d). Let A_1 , A_2 and A_3 , denote the events that the switches s_1 , s_2 and s_3 , are closed, respectively. A_{ab} denotes the event that there is a closed path between terminals a and b. Express A_{ab} in terms of A_1 , A_2 and A_3 for each of the networks shown.

(c)
$$a \xrightarrow{s_1} \xrightarrow{s_2} b$$

(d)
$$a = \begin{bmatrix} s_1 & s_2 \\ s_3 & b \end{bmatrix} b$$

3. Define probability density function. Let X be a continuous random variable X with pdf

$$f_x(x) = \begin{cases} kx & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

where k is a constant.

- (a) Determine the value of k and sketch $f_r(x)$.
- (b) Find and sketch the corresponding cdf $F_r(x)$.
- (c) Find $P(1/4 < x \le 2)$.

MINI-019

3

5 5 4 **4.** Suppose the joint pmf of a bivariate r.v. (X, Y) is given by :

$$P_{xy}(x_i, y_j) = \begin{cases} \frac{1}{3} & (0, 1), (1, 0), (2, 1) \\ 0 & \text{otherwise} \end{cases}$$

- (a) Are X and Y independent ? 7
- (b) Are X and Y uncorrelated ? 7
- 5. (a) Differentiate between Markov chain and 7 Markov process.
 - (b) Derive a two state Markov process and how it is used in digital communications ?
- 6. Consider a Markov chain with two states and transition probability matrix.

$$\mathbf{P} = \begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$$

- (a) Find the stationary distribution \hat{p} of the 4 chain.
- (b) Find $\lim_{n \to \infty} P^n$. 5
- (c) Find $\lim_{n\to\infty} P^n$ by first evaluating P^n .

7. Let
$$X(t)$$
 and $Y(t)$ be defined by
 $X(t) = U \cos(w_0 t) + V \sin(w_0 t)$
 $Y(t) = V \cos(w_0 t) - U \sin(w_0 t)$
where w_0 , is constant and U and V are
independent random variables both having zero
mean and variance σ^2 .

MINI-019

P.T.O.

7

5

	(a)	Find the cross-correlation function of $X(t)$ and $Y(t)$.			
	(b)	Find the cross power spectral density of $X(t)$ and $Y(t)$.	7		
8.	State and explain the following :				
	(a)	Discrete random variable.	4		
	(b)	Probability density function.	5		
	(c)	Cumulative distribution function.	5		