M.Tech. IN ADVANCED INFORMATION TECHNOLOGY - NETWORKING AND TELECOMMUNICATION (MTECHTC)

Term-End Examination 00197

December, 2015
MINI-019 : STATISTICAL SIGNAL ANALYSIS

Time : 3 hours
Maximum Marks : 100
Note: (i) Section - I is compulsory. Section - I carries 30 marks.
(ii) Section - II Answer any five questions. Section - II carries 70 marks.
(iii) Assume suitable data wherever required.
(iv) Draw suitable sketches wherever required.
(v) Figures to the right indicate maximum marks.

SECTION - I

$10 \times 3=30$

1. (a) What are the elementary properties of probability?
(b) Consider an experiment of drawing two cards at random from a bag containing four cards marked with the integers 1 through 4.
(i) Find the sample space S, of the experiment if the first card is replaced before the second is drawn.
(ii) Find the sample space S, of the experiment if the first card is not replaced.
(c) State the Baye's theorem of conditional probability.
(d) A lot contains 100 semiconductor chips, out of these 20 are defective. Two chips are selected randomly, without replacement, from the lot.
(i) What is the probability that the first one selected is defective?
(ii) What is the probability that the second one selected is defective given that the first one was defective ?
(iii) What is the probability that both are defective?
(e) Define discrete random variable and probability mass function.
(f) What is random process, describe it in detail?
(g) Define and explain Markov process.
(h) Define the power spectral density. What are the various properties of it ?
(i) List out four types of estimations.
(j) Explain the $M / M / 1$ queuing system.
2. Consider the switching networks shown in figure 14 (a) - (d). Let A_{1}, A_{2} and A_{3}, denote the events that the switches s_{1}, s_{2} and s_{3}, are closed, respectively. $A_{a b}$ denotes the event that there is a closed path between terminals a and b. Express $A_{a b}$ in terms of A_{1}, A_{2} and A_{3} for each of the networks shown.
(a)

(b)

(c)

(d)

3. Define probability density function. Let X be a continuous random variable X with pdf
$f_{x}(x)= \begin{cases}\mathrm{k} x & 0<x<1 \\ 0 & \text { otherwise }\end{cases}$
where k is a constant.
(a) Determine the value of k and sketch $f_{x}(x)$. 5
(b) Find and sketch the corresponding cdf $F_{x}(x)$. 5
(c) Find $P(1 / 4<x \leq 2)$.
4. Suppose the joint pmf of a bivariate r.v. (X, Y) is given by :

$$
\mathrm{P}_{x y}\left(x_{i}, y_{j}\right)= \begin{cases}\frac{1}{3} & (0,1),(1,0),(2,1) \\ 0 & \text { otherwise }\end{cases}
$$

(a) Are X and Y independent ? 7
(b) Are X and Y uncorrelated? 7
5. (a) Differentiate between Markov chain and 7 Markov process.
(b) Derive a two state Markov process and how 7
it is used in digital communications?
6. Consider a Markov chain with two states and transition probability matrix.

$$
P=\left[\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

(a) Find the stationary distribution \hat{p} of the chain.
(b) Find $\operatorname{Lim}_{n \rightarrow \infty} P^{n}$.
(c) Find $\operatorname{Lim}_{n \rightarrow \infty} P^{n}$ by first evaluating P^{n}.
7. Let $X(t)$ and $Y(t)$ be defined by
$X(t)=U \cos \left(w_{0} \mathrm{t}\right)+\mathrm{V} \sin \left(\mathrm{w}_{0} \mathrm{t}\right)$
$Y(t)=V \cos \left(w_{0} \mathrm{t}\right)-U \sin \left(w_{0} \mathrm{t}\right)$
where w_{0}, is constant and U and V are independent random variables both having zero mean and variance σ^{2}.
(a) Find the cross-correlation function of $X(t) \quad 7$ and $Y(t)$.
(b) Find the cross power spectral density of $X(t) \quad 7$
and $Y(t)$.
8. State and explain the following :
(a) Discrete random variable. 4
(b) Probability density function. 5
(c) Cumulative distribution function. 5

