M.A. IN PSYCHOLOGY (MAPC)

5963

Term-End Examination December, 2014

MPC-006: STATISTICS IN PSYCHOLOGY

Time: 2 hours Maximum Marks: 50

Note: Answer any five questions. Use of simple calculator is permitted. All questions carry equal marks.

- 1. What are the various assumptions underlying 10 Parametric and non-Parametric Statistics?
- 2. Describe briefly the significance of the difference 3+7 between the means of two independent samples. Find out whether the two groups differ significantly on the IQ scores given below.

Groups	IQ scores	SD
A	120	2.0
В	140	6.0
N = 25		25

- Differentiate between descriptive and Inferential 10
 Statistics with suitable examples.
- **4.** State the various forms of graphical presentation **10** of Data.

5. How do we determine the strength of 3+7 relationship between two variables? Find out *Rho* (Spearman's rank correlation) for the following data.

	Χ	Y
1	7	8
2	11	16
3	16	14
4	9	12
5	6	8
6	17	16
7	7	9
8	11	12
9	5	7
10	14	15

6. When do we use partial and multiple **3+7** correlations? Write the regression equation for the following.

Academic achievement	Anxiety
x	y
1	4
3	2
4	1
5	0
8	0

7. Elucidate the concept of Normal curve and its properties.

- 8. Describe standard error of the mean for large and small sample.
- 9. When do we use Kruskal Wallis Analysis of 5+5 variance? What relevant background information do you require on Kruskal Wallis ANOVA test?
- 10. Write short notes on any two of the following: 5+5
 - (a) Chi-square test
 - (b) Skewness
 - (c) Variance and Covariance : Building blocks of correlations
 - (d) Regression
 - (e) one-tail and two-tail test.