No. of Printed Pages : 5

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

December, 2014

MCH-004 : ELECTROANALYTICAL AND OTHER METHODS

Time : 3 hours

00992

Maximum Marks : 75

Note: Attempt any five questions. All questions carry equal marks.

Calculate the emf of the cell in which the 1. (a) following reaction occurs :

> $Mg + 2 Ag^+ \rightleftharpoons Mg^{2+} + 2 Ag$ Given : $[Mg^{2+}] = 0.10 \text{ M}; [Ag^{+}] = 1.0 \times 10^{-4} \text{ M}$ $E^{\circ}_{Mg^{2+}/Mg} = -2.363 V$ $E^{\circ}_{A\sigma^+/A\sigma} = +0.799$

What are the advantages of a pH metric (b) titration over a direct pH metry? 3

MCH-004

P.T.O. 1

MCH-004

4

(c) Explain the source of potential of an ion selective electrode used to determine the concentration of fluoride ion.

4

4

5

5

5

7

5

3

- (d) Explain various factors which cause error in pH measurement.
- 2. (a) Define equivalent conductivity and molar conductivity. Cite their units also. How are the two terms related with each other?
 - (b) Discuss the factors which affect the conductance of a solution.
 - (c) At 298 K, the resistance of $2 \cdot 00 \times 10^{-2}$ M KCl is 200.0 Ω and that of $2 \cdot 50 \times 10^{-3}$ M K₂SO₄ is 775.0 Ω . The conductivity (κ) of $2 \cdot 00 \times 10^{-2}$ M KCl at 298 K is $0 \cdot 277$ Sm⁻¹. Calculate the molar conductivity of K₂SO₄ solution.
- (a) What is the basic principle of controlled potential coulometry ? Point out the inherent advantages of the technique. Discuss any two applications of this technique.
 - (b) Why is there a need of external generation of titrant in coulometric titrations ? Discuss the advantages of coulometric titrations.
 - (c) Distinguish between concentration polarization and kinetic polarization.

MCH-004

2

4.	(a)	Describe a broad classification of commonly used voltammetric methods. Explain the principle of Linear Sweep Voltammetry.	5
	(b)	Discuss the advantages of dropping mercury electrode.	4
	(c)	Explain the origins of migration current. How can it be eliminated ?	4
	(d)	Why is there a need of maxima suppressor in polarography ? Name two of the maxima suppressors.	2
5.	(a)	Draw a diagram showing the basic components of a manual polarograph. Label each component and explain the working of the instrument.	5
	(b)	Explain the principle of amperometric titrations. Discuss the different types of curves obtained between volume of the reagent and current during the titration.	5
	(c)	Discuss the advantages of amperometry.	5
6.	(a)	Discuss the factors which affect the shape of a TGA curve.	5
	(b)	What are the basic components of a DTA instrument? Discuss the essential characteristics of each component and its working.	5
	(c)	How is DTA used in the characterization of polymers ? Explain with examples.	5
MCH-004		3 P.T.	О.

- 7. (a) What is the basic principle of enthalpy titrations? Discuss the shape of a typical enthalpogram for an exothermic and an endothermic reaction. Explain the different portions of the curves.
 - (b) Draw the diagram of an integrated assembly of a well type NaI (Tl) scintillation detector. Label each component and explain its working. Explain how does gamma ray interact with the detector material.
 - (c) What are the different sources of natural radioactive background in the human environment?
- 8. (a) What are the advantages of neutron activation analysis over other commonly used instrumental methods of analysis ? Point out the limitations of the technique.
 - (b) 1.00 g of an ore containing 5.0%sodium was irradiated in a nuclear reactor at a thermal neutron flux of 5.0×10^{12} n cm⁻² sec⁻¹ for 15 hr. Calculate the amount of radioactivity due to Na²⁴ in mCi immediately after the end of the irradiation.

Given :

- (i) Percentage abundance of Na^{23} in natural sodium = 100.
- (ii) Cross section of Na²³ (n, r) Na²⁴ = 0.13 barn
- (iii) Half life of $Na^{24} = 15 hr$

MCH-004

4

6

4

6

3