No. of Printed Pages: 3

MCH-003

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

00892

Term-End Examination December, 2014

MCH-003: SPECTROSCOPIC METHODS

Time: 3 hours Maximum Marks: 75

Note: Answer five questions in all. Question no. 1 is compulsory.

1. Answer any *five* of the following:

 $5\times3=15$

- (a) Explain the working of a bolometer.
- (b) Why is it necessary to use linear region of the calibration plot for quantitative analysis?
- (c) Explain chemical ionization with reference to mass spectrometry, with the help of reactions.
- (d) Explain shielding and deshielding mechanisms with reference to NMR spectroscopy.
- (e) Discuss the merits and limitations of flame photometry.
- (f) Explain the term quantum yield.

2.	(a)	IR spectra of polyatomic molecules are of complex nature. Justify.	5
	(b)	List essential components of FTIR spectrometer and explain the role of interferometer.	5
	(c)	Briefly discuss applications of Raman spectroscopy.	5
3.	(a)	Differentiate between chemiluminescence and photoluminescence.	5
	(b)	Explain the factors on which fluorescence and phosphorescence depend.	5
	(c)	Describe the analysis of Al in water by fluorescence method.	5
4.	(a)	Draw a schematic diagram of Hollow Cathode Lamp. What is EDL?	5
	(b)	Describe the standard addition method in flame photometry analysis.	5
	(c) .	Why has AFS not found widespread acceptance as an analytical technique?	5
5.	(a)	Write briefly about stepwise line fluorescence spectroscopy and thermally assisted fluorescence.	5
	(b)	What are the essential components of a fluorescence spectrometer? Explain with the help of a schematic diagram.	5
	(c)	Describe any two types of spectral interferences in flame photometry.	5

6.	(a)	The ICP-AES is a better technique than AAS for quantitative analysis. Justify.	4
	(b)	Briefly describe the working of a polychromator.	5
	(c)	Draw a schematic diagram of a double beam AAS. State any two special features of AAS.	6
7.	(a)	Explain why it is advantageous to use a magnet with higher field strength in NMR spectroscopy.	5
	(b)	Give the characteristics of TMS that make it a suitable choice as a reference in NMR.	5
	(c)	State any two quantitative applications of mass spectrometry.	5
8.	(a)	Explain the following terms:	6
		(i) Nitrogen rule	
		(ii) Metastable ions	
		(iii) Index of Hydrogen Deficiency	
	(b)	Write briefly about Magnetic sector analyser in mass spectrometry.	5
	(c)	The mass spectrum of butanoic acid gives a characteristic peak at m/z = 60. Explain	4
		the observation.	4