No. of Printed Pages: 7

**MMTE-007** 

## M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination

00212

December, 2014

## MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

- Note: Question no. 7 is compulsory. Attempt any four questions from questions no. 1 to 6. Use of calculators is **not** allowed.
- (a) The task is to recognize English alphabetical characters (F, E, X, Y, I, T) in an image processing system. Consider two fuzzy sets I and F to represent the identification of characters as given below :
  - $\mathbf{I} = \{ (\mathbf{F}, 0.4), (\mathbf{E}, 0.3), (\mathbf{X}, 0.1), (\mathbf{Y}, 0.1), (\mathbf{I}, 0.9), (\mathbf{T}, 0.8) \}$
  - $\mathbf{F} = \{ (\mathbf{F}, \ 0.99), \ (\mathbf{E}, \ 0.8), \ (\mathbf{X}, \ 0.1), \ (\mathbf{Y}, \ 0.2), \\ (\mathbf{I}, \ 0.5), \ (\mathbf{T}, \ 0.5) \}$

**MMTE-007** 

P.T.O.

- (i) Find  $\mathbf{I} \cup \mathbf{F}$ ,  $\mathbf{I} \mathbf{F}$  and  $\mathbf{F} \cup \mathbf{F}^c$ .
- (ii) Verify De-Morgan's law  $(\mathbf{I} \cup \mathbf{F})^c = \mathbf{I}^c \cap \mathbf{F}^c.$
- (b) What is the role of an activation function in neural networks ? Define the following activation functions along with their graphs:
  - (i) Linear Transfer Function
  - (ii) Threshold Function
  - (iii) Log-Sigmoid Function
  - (iv) Tan-Sigmoid Function

(a) The fuzzy sets A and B are defined as universe, x = {0, 1, 2, 3}, with the following membership fractions :

$$\mu_{\mathbf{A}}(\mathbf{x}) = \frac{2}{\mathbf{x}+3}, \qquad \mu_{\mathbf{B}}(\mathbf{x}) = \frac{4\mathbf{x}}{\mathbf{x}+5}.$$

Define the intervals along x-axis corresponding to the  $\alpha$  cut sets for each fuzzy set **A** and **B** for  $\alpha = 0.2$ , 0.5 and 0.6.

(b) Find the modified weights for the training set having input  $I_1 = 0.3$ ,  $I_2 = 0.5$  and output 0.2 with initial weight matrices

$$\begin{bmatrix} \mathbf{V} \end{bmatrix}^0 = \begin{bmatrix} 0 \cdot \mathbf{1} & 0 \cdot \mathbf{4} \\ & & \\ -0 \cdot \mathbf{2} & 0 \cdot \mathbf{2} \end{bmatrix} \text{ and } \begin{bmatrix} \mathbf{W} \end{bmatrix}^0 = \begin{bmatrix} 0 \cdot \mathbf{1} \\ \\ -0 \cdot \mathbf{4} \end{bmatrix}. \qquad 5$$

**MMTE-007** 

5

5

3. (a) Consider a data set of six-points given in the following table, each of which has two features  $f_1$  and  $f_2$ . Assuming the values of parameter c and m as 2, the initial cluster centres as  $V_1 = (6, 6)$  and  $V_2 = (11, 11)$ , apply fuzzy c-mean algorithm to find the new cluster centre after one iteration.

|                       | f <sub>1</sub> | $f_2$ |
|-----------------------|----------------|-------|
| <b>x</b> <sub>1</sub> | 3              | 13.   |
| x <sub>2</sub>        | 5              | 10    |
| x <sub>3</sub>        | 8              | 14    |
| x <sub>4</sub>        | 12             | 6     |
| <b>x</b> 5            | 13             | 8     |
| x <sub>6</sub>        | 15             | 5     |

(b) Consider the ADALINE filter with three neurons in the input layer having weights  $w_{11} = 2$ ,  $w_{12} = -1$  and  $w_{13} = 3$  and the input sequence as

 $\{..., 0, 0, 0, 10, -8, 0, 0, 0, ...\}$ . Find the output.

**MMTE-007** 

P.T.O.

4

4. (a) The neural network below uses "winner-takes-it-all" learning rule. At some instant t during the network training, inputs to the network and the weights of connections are as shown below :



- (i) What will the input at the output units be?
- (ii) What will the output be assuming threshold  $\theta_1$  and  $\theta_2$  at two different nodes ?
- (b) Consider a 4-bit chromosome '1011'. List all the schemas. Find the length and order of each of the schemas.

**MMTE-007** 

4

**5.** (a) Consider the two parents which are participating in the partially mapped crossover as shown below :

| Parent 1 | : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|----------|---|---|---|---|---|---|---|---|---|---|
| Parent 2 | : | 3 | 4 | 5 | 1 | 2 | 9 | 8 | 7 | 6 |

Assuming 2<sup>nd</sup> and 6<sup>th</sup> sites as the crossover sites, find the children solution.

(b) Consider the training sets given in the following table :

| Inp            | Output |     |
|----------------|--------|-----|
| I <sub>1</sub> | $I_2$  | 0   |
| 0.2            | - 0.1  | 0.1 |
| 0.3            | 0.5    | 0.2 |
| 0.5            | - 0.1  | 0.1 |

The initial weight vectors are  

$$[W]^0 = \begin{bmatrix} 0.2 \\ \\ -0.5 \end{bmatrix}$$
 and  $[V]^0 = \begin{bmatrix} 0.1 & 0.4 \\ \\ -0.2 & 0.2 \end{bmatrix}$ .

- (i) Draw the multilayer architecture.
- (ii) Modify weights to improve the network after one iteration. Given  $\alpha = 0.5$ . 6

**MMTE-007** 

P.T.O.

**6.** (a) Improve the solution of the following problem :

Max.  $f(x) = \sqrt{x}$ , subject to  $1 \le x \le 15$  by considering the length of the string 4. Show only one iteration.

(b) A small perceptron with two inputs and one output unit is trained using the following training set :

| Pattern<br>No. | Input | Output |
|----------------|-------|--------|
| 1              | 1     | 1      |
| 2              | 0     | 0      |

At some instant, current weights of connections and inputs to the network are as shown below :



- (i) What training pattern has been used at that instant?
- (ii) What output will the network produce ?
- (iii) Let the network learning rate be set to 0.25. How will the weights of connections,  $w_0$  and  $w_1$ , change? 5

**MMTE-007** 

- 7. Which of the following statements are *true* or *false*? Give reasons for your answer.
  - (a) For a constant input, Hopfield networks always reach a stable state after a finite number of iterations.
  - (b) SOMs can reduce the dimensionality of a given data space.
  - (c) In a 4-input neuron with weights 1, 2, 3 and 4 having the transfer function linear with the constant of proportionality being equal to 2, if the inputs are 4, 10, 5 and 20, respectively, then the output will be 76.
  - (d) For a fuzzy set A, if  $\alpha_1 < \alpha_2$  then  $A_{\alpha_1} \supseteq A_{\alpha_2}$ .
  - (e) Maximization problem can be transformed into minimization problem through Max(F(x)) = -Min(-f(x)).