M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
00212 December, 2014

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time : 2 hours

Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 7 is compulsory. Attempt any four questions from questions no. 1 to 6. Use of calculators is not allowed.

1. (a) The task is to recognize English alphabetical characters ($\mathrm{F}, \mathrm{E}, \mathrm{X}, \mathrm{Y}, \mathrm{I}, \mathrm{T}$) in an image processing system. Consider two fuzzy sets \mathbf{I} and \mathbf{F} to represent the identification of characters as given below :

$$
\begin{aligned}
\mathbf{I}= & \{(\mathrm{F}, 0.4),(\mathrm{E}, 0.3),(\mathrm{X}, 0.1),(\mathrm{Y}, 0.1), \\
& (\mathrm{I}, 0.9),(\mathrm{T}, 0.8)\} \\
\mathbf{F}= & \{(\mathrm{F}, 0.99),(\mathrm{E}, 0.8),(\mathrm{X}, 0.1),(\mathrm{Y}, 0.2), \\
& (\mathrm{I}, 0.5),(\mathrm{T}, 0.5)\}
\end{aligned}
$$

(i) Find $\mathbf{I} \cup \mathbf{F}, \mathbf{I}-\mathbf{F}$ and $\mathbf{F} \cup \mathbf{F}^{\mathbf{c}}$.
(ii) Verify De-Morgan's law

$$
\begin{equation*}
(\mathbf{I} \cup \mathbf{F})^{c}=\mathbf{I}^{\mathrm{c}} \cap \mathbf{F}^{\mathrm{c}} \tag{5}
\end{equation*}
$$

(b) What is the role of an activation function in neural networks ? Define the following activation functions along with their graphs :
(i) Linear Transfer Function
(ii) Threshold Function
(iii) Log-Sigmoid Function
(iv) Tan-Sigmoid Function
2. (a) The fuzzy sets \mathbf{A} and \mathbf{B} are defined as universe, $x=\{0,1,2,3\}$, with the following membership fractions :

$$
\mu_{\mathbf{A}}(\mathrm{x})=\frac{2}{\mathrm{x}+3}, \quad \mu_{\mathbf{B}}(\mathrm{x})=\frac{4 \mathrm{x}}{\mathrm{x}+5} .
$$

Define the intervals along x-axis corresponding to the α cut sets for each fuzzy set \mathbf{A} and \mathbf{B} for $\alpha=0 \cdot 2,0.5$ and 0.6 .
(b) Find the modified weights for the training set having input $\mathrm{I}_{1}=0.3, \mathrm{I}_{2}=0.5$ and output 0.2 with initial weight matrices

$$
[\mathrm{V}]^{0}=\left[\begin{array}{cc}
0.1 & 0.4 \\
-0.2 & 0.2
\end{array}\right] \text { and }[\mathrm{W}]^{0}=\left[\begin{array}{c}
0.1 \\
-0.4
\end{array}\right]
$$

3. (a) Consider a data set of six-points given in the following table, each of which has two features f_{1} and f_{2}. Assuming the values of parameter c and m as 2 , the initial cluster centres as $\mathrm{V}_{1}=(6,6)$ and $\mathrm{V}_{2}=(11,11)$, apply fuzzy c-mean algorithm to find the new cluster centre after one iteration.

	f_{1}	f_{2}
x_{1}	3	13
x_{2}	5	10
x_{3}	8	14
x_{4}	12	6
x_{5}	13	8
x_{6}	15	5

(b) Consider the ADALINE filter with three neurons in the input layer having weights $\mathrm{w}_{11}=2, \mathrm{w}_{12}=-1$ and $\mathrm{w}_{13}=3$ and the input sequence as $\{\ldots, 0,0,0,10,-8,0,0,0, \ldots\}$. Find the output.
4. (a) The neural network below uses "winner-takes-it-all" learning rule. At some instant t during the network training, inputs to the network and the weights of connections are as shown below :

(i) What will the input at the output units be?
(ii) What will the output be assuming threshold θ_{1} and θ_{2} at two different nodes?
(b) Consider a 4-bit chromosome '1011'. List all the schemas. Find the length and order of each of the schemas.
5. (a) Consider the two parents which are participating in the partially mapped crossover as shown below :

Parent 1	$:$	1	2	3	4	5	6	7	8	9
Parent 2	$:$	3	4	5	1	2	9	8	7	6

Assuming $2^{\text {nd }}$ and $6^{\text {th }}$ sites as the crossover sites, find the children solution.
(b) Consider the training sets given in the following table :

Input		Output
I_{1}	I_{2}	O
0.2	-0.1	0.1
0.3	0.5	0.2
0.5	-0.1	0.1

The $\left.\begin{array}{l}\text { initial } \\ {[\mathrm{W}]^{0}=}\end{array} \begin{array}{c}0.2 \\ -0.5\end{array}\right]$ weight $\begin{gathered}\text { vectors are } \\ \text { and }[\mathrm{V}]^{0}=\left[\begin{array}{cc}0.1 & 0.4 \\ -0.2 & 0.2\end{array}\right] .\end{gathered}$
(i) Draw the multilayer architecture.
(ii) Modify weights to improve the network after one iteration. Given $\alpha=0.5$.
6. (a) Improve the solution of the following problem :
Max. $f(x)=\sqrt{x}$, subject to $1 \leq x \leq 15$ by considering the length of the string 4 . Show only one iteration.
(b) A small perceptron with two inputs and one output unit is trained using the following training set :

Pattern No.	Input	Output
1	1	1
2	0	0

At some instant, current weights of connections and inputs to the network are as shown below :

(i) What training pattern has been used at that instant?
(ii) What output will the network produce?
(iii) Let the network learning rate be set to $0 \cdot 25$. How will the weights of connections, w_{0} and w_{1}, change?
7. Which of the following statements are true or false? Give reasons for your answer.
(a) For a constant input, Hopfield networks always reach a stable state after a finite number of iterations.
(b) SOMs can reduce the dimensionality of a given data space.
(c) In a 4 -input neuron with weights $1,2,3$ and 4 having the transfer function linear with the constant of proportionality being equal to 2 , if the inputs are $4,10,5$ and 20 , respectively, then the output will be 76 .
(d) For a fuzzy set \mathbf{A}, if $\alpha_{1}<\alpha_{2}$ then $\mathbf{A}_{\alpha_{1}} \supseteq \mathbf{A}_{\alpha_{2}}$.
(e) Maximization problem can be transformed into minimization problem through $\operatorname{Max}(F(x))=-\operatorname{Min}(-f(x))$.

