M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

00942 Term-End Examination
December, 2014

MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time: 2 hours
Maximum Marks : 50
Note: Attempt any five questions. All questions carry equal marks. Use of calculators is not allowed.

1. (a) What are the important components of image processing system ? Describe any two components briefly.
(b) It is given that

Symbol	a	b	c	d	e	f
Frequency	21	16	15	18	32	8

How many bits are required to code the above data using Huffman coding?
(c) Suppose that a digital image is subjected to histogram equalization. Show that a second pass of histogram equalization will produce exactly the same result as the first pass.
2. (a) Show that the Laplacian of a continuous function $f(t, z)$ of continuous variables t and z satisfies the following Fourier transform pair :
$\nabla^{2} f(t, z) \Leftrightarrow-4 \pi^{2}\left(\mu^{2}+\eta^{2}\right) F(\mu, \eta)$ where $F(\mu, \eta)$ is the Fourier transform of $\mathrm{f}(\mathrm{t}, \mathrm{z})$.
(b) Show that subtracting the Laplacian of an image from that image is proportional to the Unsharp masking.
3. (a) Consider the problem of image blurring caused by uniform acceleration in the x-direction. If an image is at rest at time $\mathrm{t}=0$ and accelerates with a uniform acceleration $x_{0}(t)=\frac{a t^{2}}{2}$ for time t, then find the blurring function $\mathrm{H}(\mathrm{u}, \mathrm{v})$. You may assume that the shutter opening and closing times are negligible.
(b) A binary image contains four straight lines which are oriented horizontally and vertically, at 45° and at -45° respectively. Give a set of 3×3 masks that can be used to detect 1-pixel-long breaks in these lines. Assume that the grey level of the lines is 1 and that the grey level of the background is 0 .
4. (a) Determine whether the following statements are true or false. Explain the reason for each answer.
(i) The non-zero entries of the absolute ADI continue to grow in dimension as long as the object is moving.
(ii) The non-zero entries in the positive ADI always occupy the same area, regardless of the motion undergone by the object.
(iii) The non-zero entries of the negative ADI continue to grow in dimension as long as the object is moving.
(b) The speed of a bullet in flight is to be estimated by using high-speed imaging technique. The method of choice involves the use of a TV camera and flash that exposes the scene for K seconds. The bullet is 2.5 cm long, 1 cm wide, and its range of speed is $750 \pm 250 \mathrm{~m} / \mathrm{s}$. The camera optics produces an image in which the bullet occupies 10% of the horizontal resolution of 256×256 digital image. Determine the maximum value of K that will guarantee that the blur from the motion does not exceed 1-pixel.
5. (a) Show that redefining the starting point of a chain code, so that the resulting sequence of numbers forms an integer of minimum magnitude, makes the code independent of the initial starting point on the boundary.
(b) Find the normalized starting point of the code 11076765543322.
(c) Find the expression for the signature for the boundary of an equilateral triangle as shown in the following figure:

6. (a) The Bayes decision functions $d_{j}(x)=p\left(x \mid w_{j}\right) p\left(w_{j}\right), j=1,2, \ldots w ;$ were derived using a $0-1$ loss function. Prove that these decision functions minimize the probability of error. Find $p(c)$ and show that $p(c)$ is maximum, when $p\left(x \mid w_{i}\right) p\left(w_{i}\right)$ is maximum. Assume that the probability of error $p(e)$ is $1-p(c)$ where $p(c)$ is probability of being correct and for a pattern vector x belonging to class w_{i}, $p(c \mid x)=p\left(w_{i} \mid x\right)$.
(b) Specify the structure and weights of a neural network capable of performing exactly the same function as a minimum distance classifier in n-dimensional space.
7. (a) Perform the linear convolution between two matrices $X(m, n)$ and $h(m, n)$ given as
$\mathrm{X}(\mathrm{m}, \mathrm{n})=\left[\begin{array}{lll}11 & 12 & 13 \\ 14 & 15 & 16 \\ 17 & 18 & 19\end{array}\right]$ and
$h(m, n)=\left[\begin{array}{ll}3 & 5\end{array}\right]$
Also obtain the linear correlation between X and h and comment on the result obtained.
(b) Consider the four vectors $\mathbf{x}_{1}=(0,0,0)^{t}$, $\mathbf{x}_{2}=(1,0,0)^{\mathrm{t}}, \mathbf{x}_{3}=(1,1,0)^{\mathrm{t}}, \mathbf{x}_{4}=(1,0,1)^{\mathrm{t}}$.
Find the projected points, if the dimensions are reduced from three to two using Principal Component analysis.

