No. of Printed Pages : 4

MMTE-002

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) 00402

Term-End Examination

December, 2014

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 hours

Maximum Marks : 50

Note: Do any five questions from questions no. 1 to 6. Use of calculators is **not** allowed.

1.	(a)	Find 9^{560} (mod 561) using modular				
		exponentiation algorithm.				
	(b) ·	Compute the Discrete Fourier Transform of $(2, 2, -1, 1)$.	2			
	(c)	Describe counting sort algorithm. Is counting sort stable ? Justify your answer.	4			

Show that if all edges of a graph have 2. (a) distinct weights, then there exists a unique minimum weight spanning tree.

1

MMTE-002

P.T.O.

Consider the following algorithm : (b) Algorithm Find Min (A[1, 2, ..., n]) $\min = A[1];$ for i = 2 to n do if A[i] < minthen $\min = A[i]$ return min Formulate a loop invariant and using it prove that the algorithm correctly finds minimum element. 53. (a) Illustrate worst performance case of quicksort, through an example. 4 Show that, if $n \ge 1$, then for any n-key (b) B-tree T of height h and minimum degree $t \ge 2$ is given by $h \le \log_t \frac{n+1}{2}$ 3 Give the pseudocodes for MAKE-SET. (c) UNION and LINK for finding disjoint-set forests. 3 Simulate execution of Dijkstra's algorithm 4. (a) for the following example : 5 х 1 t 10

MMTE-002

(b) Explain why the tree given in the figure below is not a binary search tree. Change the value of at most one key so that it becomes a binary search tree.

Also give the sequence of nodes examined if

- (i) we apply the procedure Tree-Minimum.
- (ii) we search the tree for the key 14.
- (iii) we insert the key "9".
- 5. (a) Find an optimal parenthesization of a matrix-chain product whose sequence of dimension is (5, 10, 3, 12, 5).

MMTE-002

3

P.T.O.

(b) What is the Huffman Code for the following set of frequencies :

a	b	с	d	е	f
70	32	26	23	16	14

Show all the steps of the algorithm. Also, compute the number of bits required to encode the data.

6. (a) Assuming that all elements in a max-heap are distinct, where could possibly the smallest element reside in a max-heap ? Justify your answer.

- (b) Define activity selection problem and describe a greedy algorithm for it.
- (c) For the following network flow, draw the residual network :

Find the augmenting path p and use it to augment the flow. Draw the flow network of the augmented flow.

MMTE-002

4

5

5