M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
0050 i
December, 2014

MMTE-001 : GRAPH THEORY

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note : Question no. 1 is compulsory. Answer any four from the remaining six (2-7). Calculators or any other electronic devices are not allowed.

1. State, with justification or illustration, whether each of the following statements is true or false.

$$
5 \times 2=10
$$

(a) If G is a graph with K_{3} as a sub-graph, then G is not a bipartite graph.
(b) If $\overline{\mathrm{G}}$ is connected, then G is also connected.
(c) Every tree with two or more vertices is bipartite.
(d) The sequence

$$
(5,5,5,5,5,4,4,4,4,3,3,3,2,2,1,1)
$$

is a graphic sequence.
(e) $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is Eulerian if $\mathrm{m}+\mathrm{n}$ is even.
2. (a) Define isomorphisms of simple graphs. Check if the following graph G is isomorphic to the Petersen graph.

G
(b) Let v be a cut-vertex of a simple graph. Prove that $\overline{\mathbf{G}}-\mathrm{V}$ is connected.
3. (a) Prove that with n vertices, $n \geq 2$, in any simple graph there are at least two vertices of the same degree.
(b) Prove that a bipartite graph has a unique partition if and only if it is connected.5
(c) Draw the dual graph of the following graph :

4. (a) Prove that every simple graph G has a bipartite subgraph with at least $\frac{\mathrm{e}(\mathrm{G})}{2}$ edges.
(b) If G is a simple graph with diameter at least three, then the diameter of its complement $\overline{\mathbf{G}}$ is atmost three.
(c) Use Kruskal's algorithm to find the minimum spanning tree of the following graph :

5. (a) Find a maximum matching in the following graph.

Prove that this is a maximum matching by exhibiting an optimal solution to the dual problem of finding minimum vertex cover.
(b) Define hypercube Q_{n} and determine its vertex connectivity.
6. (a) Prove that the following statements are equivalent for a plane graph G :
(i) G is bipartite.
(ii) The dual graph G* is Eulerian.
(b) State and prove Euler's formula for plane graphs.
(c) Let G be a graph with n vertices where chromatic polynomial is $k(k-1)^{n-1}$. Prove that G is a tree.
7. (a) Prove that any simple n-vertex graph with $\binom{n-1}{2}+2$ edges is Hamiltonian if $n \geq 3$.
(b) Define an interval graph. Show that if G is an interval graph, then $\chi(G)=\omega(G)$.

