No. of Printed Pages : 4

MMTE-001

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

00902

December, 2014

MMTE-001 : GRAPH THEORY

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

Note: Question no. 1 is compulsory. Answer any four from the remaining six (2-7). Calculators or any other electronic devices are not allowed.

1. State, with justification or illustration, whether each of the following statements is *true* or *false*.

5×2=10

- (a) If G is a graph with K₃ as a sub-graph, then G is not a bipartite graph.
- (b) If G is connected, then G is also connected.
- (c) Every tree with two or more vertices is bipartite.
- (d) The sequence (5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1) is a graphic sequence.
- (e) $K_{m, n}$ is Eulerian if m + n is even.

MMTE-001

2. (a) Define isomorphisms of simple graphs.Check if the following graph G is isomorphic to the Petersen graph.

5

5

3

5

2

- (b) Let v be a cut-vertex of a simple graph. Prove that \overline{G} -V is connected.
- (a) Prove that with n vertices, n ≥ 2, in any simple graph there are at least two vertices of the same degree.
 - (b) Prove that a bipartite graph has a unique partition if and only if it is connected.
 - (c) Draw the dual graph of the following graph:

MMTE-001

2

- 4. (a) Prove that every simple graph G has a bipartite subgraph with at least $\frac{e(G)}{2}$ edges.
 - (b) If G is a simple graph with diameter at least three, then the diameter of its complement \overline{G} is atmost three.
 - (c) Use Kruskal's algorithm to find the minimum spanning tree of the following graph:

5. (a) Find a maximum matching in the following graph.

Prove that this is a maximum matching by exhibiting an optimal solution to the dual problem of finding minimum vertex cover.

(b) Define hypercube Q_n and determine its vertex connectivity.

MMTE-001

3

P.T.O.

5

3

3

4

5

- 6. (a) Prove that the following statements are equivalent for a plane graph G: 4
 - (i) G is bipartite.
 - (ii) The dual graph G^* is Eulerian.
 - (b) State and prove Euler's formula for plane graphs.
 - (c) Let G be a graph with n vertices where chromatic polynomial is $k(k-1)^{n-1}$. Prove that G is a tree.
- 7. (a) Prove that any simple n-vertex graph with $\binom{n-1}{2}$ + 2 edges is Hamiltonian if $n \ge 3$. 5
 - (b) Define an interval graph. Show that if G is an interval graph, then $\chi(G) = \omega(G)$.

3

3

5