M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
00820 December, 2014

MMT-004 : REAL ANALYSIS

Time : 2 hours
Maximum Marks : 50
(Weightage : 70\%)

Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 7.

1. State, whether the following statements are true or false. Give reasons for your answer. $5 \times 2=10$
(a) If (X, d) is a metric space, then $\rho(\mathrm{x}, \mathrm{y})=\max \{1, \mathrm{~d}(\mathrm{x}, \mathrm{y})\}$ is a metric on X .
(b) Intersection of a dense set and a nowhere dense set in a metric space is always a dense set.
(c) The function $f(x, y)=(x+y, \cos |x y|)$ is continuously differentiable on \mathbf{R}^{2}.
(d) If E is a measurable set, then each translate $\mathrm{E}+\mathrm{y}$ is also measurable, for $\mathrm{y} \in \mathbf{R}$.
(e) The system (Rf) (t) $=\int_{-\infty}^{\mathrm{t}-1} \mathrm{f}(\tau) \mathrm{d} \tau$ is causal.
2. (a) Verify whether the metrics $\mathrm{d}_{1}(\mathrm{x}, \mathrm{y})=\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}} \quad$ and $\mathrm{d}_{2}(\mathrm{x}, \mathrm{y})=\max \left\{\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|,\left|\mathrm{y}_{1}-\mathrm{y}_{2}\right|\right\}$ on \mathbf{R}^{2}
are equivalent or not.
(b) Verify the chain rule for $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}^{2}$ defined by $f(t)=\left(t^{2}, t\right)$ and $g: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ defined by $\mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\mathrm{x}_{2} \sin \mathrm{x}_{1}, \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}, \cos \mathrm{x}_{2}\right)$.
(c) Find outer measure of the following sets :
(i) $\mathrm{A}=[-1,1] \cup\left\{\mathrm{x} \in \mathbf{R}: \mathrm{x}^{3}-8=0\right\}$
(ii) $\mathrm{B}=(0,1] \cup\left(\frac{1}{2}, 2\right) \cup\left(\frac{3}{2}, 4\right)$
3. (a) Let $p_{1}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be the function such that $\mathrm{p}_{1}(\mathrm{x}, \mathrm{y})=\mathrm{x}$. Show that p_{1} is uniformly continuous on \mathbf{R}^{2}.
(b) Find the regions where
$f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right) \quad$ is locally invertible. Is this function invertible as a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$. Justify your answer.
(c) Show that x_{A} is measurable if and only if $\mathrm{A} \subset \mathbf{R}$ is measurable. 3
4. (a) State Lebesgue Dominated Convergence Theorem. Use this to find
$\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x \quad$ where $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}} . \quad 5$
(b) Let $\mathrm{F}: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ be defined by
$F(x, y, z, w)=\left(2 x^{2} y, x y z, x^{2}+y^{2}+2 z^{2}\right)$
Find $\mathrm{F}^{\prime}(\mathrm{a})$ at $\mathrm{a}=(1,0,1,0)$.
5. (a) Show that the closure of a connected set in a metric space is always connected.
(b) Find the critical points of $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{4}+2 \mathrm{y}^{2}+3 \mathrm{z}^{2}-2 \mathrm{x}^{2}+4 \mathrm{y}-12 \mathrm{z}+3$ and check whether they are extreme points.
(c) Show that the system $(R f)(t)=t f(t)$ is time-varying system.
6. (a) Use the method of Lagrange's multiplier to find the point on the line of intersection of the planes $\mathrm{x}-\mathrm{y}=2$ and $\mathrm{x}-2 \mathrm{z}=4$ that is closest to the origin.
(b) Find the Fourier series for $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2},-\pi<\mathrm{x}<\pi$.
(c) Suppose $\mathrm{f} \in \mathrm{L}^{1}(\mathbf{R}), \alpha \in \mathbf{R}$. Prove that if $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x}-\alpha)$ then $\hat{\mathrm{g}}(\mathrm{w})=\hat{\mathrm{f}}(\mathrm{w}-\alpha)$.
7. (a) Let X be a metric space such that given any two points $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ there exists connected set A such that $x, y \in A$. Show that X is connected.

3
(b) Suppose f, $\mathrm{g} \in \mathrm{L}^{1}(\mathbf{R})$ and $\mathrm{h}=\mathrm{f} * \mathrm{~g}$. Show that $\hat{h}(w)=\hat{f}(w) \cdot \hat{g}(w)$. 4
(c) Check whether the system (Rf) $(\mathrm{t})=\mathrm{a}+\mathrm{f}(\mathrm{t})$ is linear or not.

