No. of Printed Pages : 3

MMT-003

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

00222

Term-End Examination

December, 2014

MMT-003 : ALGEBRA

Time : 2 hours

Maximum Marks : 50

(Weightage : 70%)

- Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 6. Use of calculators is **not** allowed.
- Which of the following statements are true and which are false ? Give reasons for your answers. 10
 - (a) If every proper subgroup of a finite group G is cyclic, then G is cyclic.
 - (b) The action of $GL_n(\mathbf{R})$ on \mathbf{R}^n by left multiplication is transitive.
 - (c) If a group is non-abelian, then it has an irreducible representation of degree greater than 1.

MMT-003

1

P.T.O.

- (d) If K/L is a Galois extension and F is a field such that $L \subseteq F \subseteq K$, then F/L is a Galois extension.
- (e) The splitting field of $x^{15} 1 \in \mathbf{Q}[x]$ has 15 elements.
- 2. (a) Prove that $SP_2(\mathbf{R}) = SL_2(\mathbf{R})$, but $SP_4(\mathbf{R}) \neq SL_4(\mathbf{R})$.
 - (b) Determine the character table for the Alternating group A_4 .

4

6

5

5

4

4

3. (a) For $n \ge 4$, prove that the symmetric group S_n is not cyclic. Further, find the minimum number of elements required to generate S_n .

(b) Determine the irreducible polynomial for $\alpha = \sqrt{2} + \sqrt{3}$ over each of the following fields (i) Q, (ii) Q($\sqrt{2}$).

4. (a) Solve the set of congruences

$$x \equiv 1 \pmod{3}, x \equiv 2 \pmod{4}, x \equiv 3 \pmod{5}.$$
 4

- (b) Show that $PG(2, \mathbf{F}_{q})$ is a projective plane. 6
- 5. (a) Let P be a matrix in $SO_3(\mathbb{C})$. Prove that 1 is an eigenvalue of P.
 - (b) Let G be a finite group with exactly two conjugacy classes. Prove that G must be cyclic of order 2.

MMT-003

- Check if the ISBN number (c) 978 - 0 - 143 - 06650 - 7is a valid ISBN number.
- Let α be a complex root of the irreducible (a) polynomial $x^3 - 3x + 4$. Find the inverse of α^2 + 1 explicitly in the form

$$\mathbf{a} + \mathbf{b}\alpha + \mathbf{c}\alpha^2$$
, \mathbf{a} , \mathbf{b} , $\mathbf{c} \in \mathbf{Q}$.

- Let G be the group generated by x, y, z, (b) with certain relations $\{r_i \mid i \in I\}$, where I is an indexing set. Suppose one of the relations has the form wx, where w is a word in y, z. Let r' be the relation obtained by substituting w^{-1} for x into r_i, and let G' be the group generated by y, z with relations { $r_i' \mid i \in I$ }. Prove that G and G' are isomorphic.
- Give an example, with justification, of a (c) regular language.

 $\mathbf{2}$

MMT-003

1,000

6.

3

 $\mathbf{2}$

5