# M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) 

## 00222 Term-End Examination

December, 2014

## MMT-003 : ALGEBRA

Time : 2 hours
Maximum Marks : 50
(Weightage : 70\%)

Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 6. Use of calculators is not allowed.

1. Which of the following statements are true and which are false? Give reasons for your answers.
(a) If every proper subgroup of a finite group G is cyclic, then G is cyclic.
(b) The action of $\mathrm{GL}_{\mathrm{n}}(\mathbf{R})$ on $\mathbf{R}^{\mathrm{n}}$ by left multiplication is transitive.
(c) If a group is non-abelian, then it has an irreducible representation of degree greater than 1.
(d) If $\mathrm{K} / \mathrm{L}$ is a Galois extension and F is a field such that $\mathrm{L} \subseteq \mathrm{F} \subseteq \mathrm{K}$, then $\mathrm{F} / \mathrm{L}$ is a Galois extension.
(e) The splitting field of $\mathrm{x}^{15}-1 \in \mathbf{Q}[\mathrm{x}]$ has 15 elements.
2. (a) Prove that $\mathrm{SP}_{2}(\mathbf{R})=\mathrm{SL}_{2}(\mathbf{R})$, but $\mathrm{SP}_{4}(\mathbf{R}) \neq \mathrm{SL}_{4}(\mathbf{R})$.
(b) Determine the character table for the Alternating group $\mathrm{A}_{4}$.
3. (a) For $\mathrm{n} \geq 4$, prove that the symmetric group $S_{n}$ is not cyclic. Further, find the minimum number of elements required to generate $\mathrm{S}_{\mathrm{n}}$. 5
(b) Determine the irreducible polynomial for $\alpha=\sqrt{2}+\sqrt{3}$ over each of the following fields (i) $Q$, (ii) $\mathbf{Q}(\sqrt{2})$.
4. (a) Solve the set of congruences $\mathrm{x} \equiv 1(\bmod 3), \mathrm{x} \equiv 2(\bmod 4), \mathrm{x} \equiv 3(\bmod 5) . \quad 4$
(b) Show that $\operatorname{PG}\left(2, \mathbf{F}_{\mathrm{q}}\right)$ is a projective plane.
5. (a) Let P be a matrix in $\mathrm{SO}_{3}(\mathbf{C})$. Prove that $\mathbf{1}$ is an eigenvalue of P .
(b) Let $G$ be a finite group with exactly two conjugacy classes. Prove that G must be cyclic of order 2 .
(c) Check if the ISBN number 978-0-143-06650-7 is a valid ISBN number. 2
6. (a) Let $\alpha$ be a complex root of the irreducible polynomial $x^{3}-3 x+4$. Find the inverse of $\alpha^{2}+1$ explicitly in the form

$$
\begin{equation*}
a+b \alpha+c \alpha^{2}, a, b, c \in \mathbf{Q} \tag{3}
\end{equation*}
$$

(b) Let $G$ be the group generated by $x, y, z$, with certain relations $\left\{r_{i} \mid i \in I\right\}$, where $I$ is an indexing set. Suppose one of the relations has the form wx, where $w$ is a word in $y, z$. Let $r_{i}^{\prime}$ be the relation obtained by substituting $w^{-1}$ for $x$ into $r_{i}$, and let $G^{\prime}$ be the group generated by $y, z$ with relations $\left\{r_{i}{ }^{\prime} \mid i \in I\right.$ ). Prove that $G$ and $G^{\prime}$ are isomorphic.
(c) Give an example, with justification, of a regular language.

