M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

00182 Term-End Examination December, 2014

MMT-002 : LINEAR ALGEBRA

Time $: 1 \frac{1}{2}$ hours \quad Maximum Marks : 25
(Weightage : 70\%)

Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is not allowed.

1. (a) Let $\mathbf{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be a linear transformation defined by

$$
T(x, y, z)=(3 x+2 y-4 z, x-5 y+3 z)
$$

Find the matrix of T relative to the bases $\{(1,1,1),(1,1,0),(1,0,0)\}$ of \mathbf{R}^{3} and $\{(1,3),(2,5)\}$ of \mathbf{R}^{2}.
(b) Find the spectral decomposition of

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

2. (a) Find a QR-decomposition of A, and hence find a least-squares solution of the system $\mathrm{Ax}=\mathrm{b}$, where

$$
A=\left[\begin{array}{cc}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right] \text { and } b=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

(b) Write all possible Jordan canonical forms of a 5×5 matrix having

$$
(t-2)^{2}(t-3)(t-4)
$$

as minimal polynomial.
3. Find the singular value decomposition of

$$
A=\left[\begin{array}{rr}
1 & -1 \tag{5}\\
-2 & 2 \\
2 & -2
\end{array}\right]
$$

4. (a) Prove that a non-zero nilpotent operator is not diagonalisable.
(b) Check whether $\mathrm{A}=\left[\begin{array}{rrr}3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5\end{array}\right]$ is unitarily diagonalisable. If it is, find a unitary matrix U such that $U^{*} A U$ is diagonal. Otherwise, obtain the Schur decomposition of A.
5. Which of the following statements is true? Give reasons for your answers.
(a) The sum of two unitarily diagonalisable matrices is unitarily diagonalisable.
(b) An invertible matrix must be positive definite.
(c) A and $\mathrm{A}^{\mathrm{t}} \mathrm{A}$ have the same rank, for any matrix A .
(d) If A is a diagonalisable matrix, the geometric multiplicity of each of its eigenvalues is 1 .
(e) If N is a nilpotent matrix, then e^{N} is also nilpotent.
