No. of Printed Pages : 3

MMT-002

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

00182 Term-End Examination

December, 2014

MMT-002 : LINEAR ALGEBRA

Time : $1\frac{1}{2}$ hours

(Weightage : 70%)

Maximum Marks : 25

- Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is **not** allowed.
- 1. (a) Let $T : \mathbf{R}^3 \to \mathbf{R}^2$ be a linear transformation defined by

T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z).

Find the matrix of T relative to the bases $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ of \mathbf{R}^3 and $\{(1, 3), (2, 5)\}$ of \mathbf{R}^2 .

(b) Find the spectral decomposition of

1

1	1	1		
1	1	1.		2
1	1	1		

MMT-002

P.T.O.

3

2. (a) Find a QR-decomposition of A, and hence find a least-squares solution of the system Ax = b, where

$$\mathbf{A} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.$$

(b) Write all possible Jordan canonical forms of a 5×5 matrix having

$$(t-2)^2 (t-3) (t-4)$$

as minimal polynomial.

3. Find the singular value decomposition of

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}.$$

- **4.** (a) Prove that a non-zero nilpotent operator is not diagonalisable.
 - (b) Check whether A = $\begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5 \end{bmatrix}$ is

unitarily diagonalisable. If it is, find a unitary matrix U such that $U^* A U$ is diagonal. Otherwise, obtain the Schur decomposition of A.

MMT-002

5

 $\mathbf{2}$

2

3

3

- **5.** Which of the following statements is true ? Give reasons for your answers.
 - (a) The sum of two unitarily diagonalisable matrices is unitarily diagonalisable.
 - (b) An invertible matrix must be positive definite.
 - (c) A and A^tA have the same rank, for any matrix A.
 - (d) If A is a diagonalisable matrix, the geometric multiplicity of each of its eigenvalues is 1.
 - (e) If N is a nilpotent matrix, then e^N is also nilpotent.

1,000

10