M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Practical Examination

December, 2014
MMT-007(P) : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 40

Note: There are two questions in this paper. Answer both the questions. 10 marks are viva-voce.

1. Write a program in ' C ' language to solve the initial value problem

$$
\frac{d y}{d x}=-2 x y^{2}, y(0)=1
$$

in the interval [0,2] using fourth-order Milne's Predictor - Corrector method with $h=0 \cdot 2$. Calculate the starting values using the fourth-order Runge - Kutta method with the same step length. Perform two corrector iterations per step.
2. Write a program in ' C ' language to solve the equation

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 4, t>0 \\
u(x, 0)=\frac{x}{3}\left(16-x^{2}\right), u(0, t)=u(4, t)=0 \\
\text { with } h=1 \text { and } \lambda=\frac{1}{2} \text { by using Crank - Nicolson method. Integrate for two time }
\end{gathered}
$$

levels.

