BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2014

ELECTIVE COURSE : MATHEMATICS MTE-06 : ABSTRACT ALGEBRA

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Attempt five questions in all. Question no. 7 is compulsory. Answer any four questions from Q. No. 1 to 6. Use of calculators is not allowed.

1. (a) Express the permutation
$\sigma=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 8 & 1 & 6 & 4 & 7 & 5 & 9\end{array}\right)$
as a product of disjoint cycles and as a product of transpositions. Find a permutation τ in S_{9} such that $\tau \sigma \sigma=\sigma \circ \tau=\mathrm{e}$, where e is the identity permutation in S_{9}.
(b) Give examples each of a finite and an infinite integral domain.
(c) Defining addition and multiplication in \mathbf{R}^{2} component-wise, i.e.

$$
\begin{aligned}
& \left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}\right) \\
& \left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \cdot\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{y}_{1} \mathrm{y}_{2}\right)
\end{aligned}
$$

prove that \mathbf{R}^{2} is a ring. Is it an integral domain? Justify your answer.
2. (a) If R is a ring such that $x^{2}=x$, for every $x \in R$, show that R is a commutative ring. Give an example of such a ring.
(b) Find the nil radical of an integral domain.
(c) If F is a field with 49 elements, prove that $x^{49}=x, \forall x \in F$. Also, find the characteristic of F.
3. (a) Show that $\mathbf{Q}+\sqrt{-5} \mathbf{Q}$ is a subfield of \mathbf{C}. Also, check that it is the quotient field of $\mathbf{Z}+\sqrt{-5} \mathbf{Z}$.
(b) Classify all the groups of order less than or equal to 6 upto isomorphism.
(c) Prove that the polynomial $6 x^{5}+30 x^{4}-40 x^{3}+20 x+40$ is irreducible in $\mathbf{Q}[\mathrm{x}]$. Is it irreducible in $\mathbf{Z}[\mathrm{x}]$?
4. (a) Let

$$
G=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right] \right\rvert\, a, b, d \in \mathbf{R}, a d \neq 0\right\}
$$

and

$$
H=\left\{\left.\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right] \right\rvert\, x \in \mathbf{R}\right\}
$$

Show that H is a subgroup of G. Further, show that H is a normal subgroup of G . Is G/H abelian? Justify your answer.
(b) Show that $\mathbf{f}: \mathbf{Z}+\mathrm{i} \mathbf{Z} \rightarrow \mathbf{Z}_{2}$ defined by

$$
f(a+i b)=(a-b) \quad(\bmod 2)
$$

is an onto ring homomorphism. Determine ker f. Is it a maximal ideal ? Justify your answer.
5. (a) Let $S=\{(x, y) \mid x, y \in R\}$ be the plane in the rectangular co-ordinate system. Define a relation \sim by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ iff $x_{1}-x_{2}$ is an integer.
(i) Show that \sim is an equivalence relation.
(ii) Give a geometric description of the equivalence class to which $(0,0)$ belongs.
(b) If G is a group of even order, prove that it has an element $a \neq e$ satisfying $a^{2}=e$, where e is the identity element of G.
(c) Show that the set G of matrices of the form

$$
\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]
$$

where α is a real number, forms a group under matrix multiplication.
6. (a) Does the ring

$$
\frac{\mathbf{Z}_{7}[\mathrm{x}]}{\left\langle\mathrm{x}^{2}+\overline{3}\right\rangle}
$$

have nilpotent elements ? Justify your answer.
(b) Find all the maximal ideals of the ring \mathbf{Z}_{36}.
(c) Let $\mathrm{M}_{2}(\mathbf{Z})$ be the ring of all 2×2 matrices over the integers and let

$$
R=\left\{\left.\left[\begin{array}{cc}
a & a-b \\
a-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbf{Z}\right\}
$$

Is R a subring of $\mathrm{M}_{2}(\mathbf{Z})$? Justify your answer.
7. Which of the following statements are true and which are false? Give reasons for your answer.10
(i) If G is a group of order n and if d is a divisor of n, then there exists a subgroup of G of order d.
(ii) The ring \mathbf{Q} of all rational numbers has proper non-trivial subrings, but has no proper non-trivial ideals.
(iii) If every subgroup of a group G is normal, then G is abelian.
(iv) There exists a field with 100 elements.
(v) Any polynomial of degree n over a ring R can have at most n roots in the ring R.

स्नातक उपाधि कार्यक्रम
(बी.डी.पी.)
सत्रांत परीक्षा
दिसम्बर, 2014
ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-06 : अमूर्त बीजगणित
समय: 2 घण्टे अधिकतम अंक : 50 (कुल का : 70\%)
नोट: कुल पाँच प्रश्न कीजिए। प्रश्न सं. 7 करना अनिवार्य है । प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए / कैल्कुलेटरों का प्रयोग करने की अनुमति नहीं है ।

1. (क) निम्नलिखित क्रमचय
$\sigma=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 8 & 1 & 6 & 4 & 7 & 5 & 9\end{array}\right)$
को असंयुक्त चक्रों के गुणनफल तथा पक्षांतरणों के गुणनफल के रूप में व्यक्त कीजिए । S_{9} में ऐसा क्रमचय τ ज्ञात कीजिए जिसके लिए $\tau \circ \sigma=\sigma \circ \tau=\mathrm{e}$, जहाँ $\mathrm{e}, \mathrm{S}_{9}$ में तत्समक क्रमचय है।
(ख) परिमित और अपरिमित पूर्णांकीय प्रांत का एक-एक उदाहरण दीजिए।
(ग) \mathbf{R}^{2} में संगत घटकों के योग और गुणन को परिभाषित करते हुए अर्थात्

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
& \left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2}\right)
\end{aligned}
$$

सिद्ध कीजिए कि \mathbf{R}^{2} एक वलय है। क्या यह पूर्णांकीय प्रांत है ? अपने उत्तर की पुष्टि कीजिए।
2. (क) यदि R एक ऐसा वलय है जिसमें R के प्रत्येक x के लिए $x^{2}=x$ है, तब दिखाइए कि R एक क्रमविनिमेय वलय है। ऐसे वलय का एक उदाहरण दीजिए।
(ख) पूर्णांकीय प्रांत का शून्य करणी ज्ञात कीजिए ।
(ग) यदि F एक 49 अवयवों वाला क्षेत्र है, तब सिद्ध कीजिए कि $\mathrm{x}^{49}=\mathrm{x}, \forall \mathrm{x} \in \mathrm{F} . \mathrm{F}$ का अभिलक्षणिक भी ज्ञात कीजिए।
3. (क) दिखाइए कि $\mathbf{Q}+\sqrt{-5} \mathbf{Q}, \mathbf{C}$ का एक उपक्षेत्र है । यह भी जाँच कीजिए कि यह $\mathbf{Z}+\sqrt{-5} \mathbf{Z}$ का विभाग क्षेत्र है।
(ख) 6 या उससे कम कोटि के सभी समूहों का तुल्याकारिता तक वर्गीकरण कीजिए।
(ग) सिद्ध कीजिए कि बहुपद
$6 x^{5}+30 x^{4}-40 x^{3}+20 x+40$,
$\mathbf{Q}[\mathrm{x}]$ पर अखंडनीय है । क्या यह $\mathrm{Z}[\mathrm{x}]$ पर भी अखंडनीय है ?
4. (क) मान लीजिए

$$
G=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right] \right\rvert\, a, b, d \in \mathbf{R}, a d \neq 0\right\}
$$

और

$$
H=\left\{\left.\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right] \right\rvert\, x \in \mathbf{R}\right\} .
$$

दिखाइए कि H, G का उपसमूह है । इसके आगे, दिखाइए कि H, G का प्रसामान्य उपसमूह है । क्या G / H आबेली है ? अपने उत्तर की पुष्टि कीजिए ।
(ख) दिखाइए कि $\mathrm{f}(\mathrm{a}+\mathrm{ib})=(\mathrm{a}-\mathrm{b})(\bmod 2)$ द्वारा परिभाषित फलन $\mathrm{f}: \mathbf{Z}+\mathrm{i} \mathbf{Z} \rightarrow \mathbf{Z}_{2}$ आच्छादक वलय समाकारिता है । ker f ज्ञात कीजिए। क्या यह एक उच्चिष्ठ गुणजावली है ? अपने उत्तर की पुष्टि कीजिए।
5. (क) मान लीजिए $S=\{(x, y) \mid x, y \in \mathbf{R}\}$ आयताकार निर्देशांक तंत्र में समतल है । एक संबंध ~ इस प्रकार परिभाषित कीजिए कि $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \sim\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ यदि और केवल यदि $\mathrm{x}_{1}-\mathrm{x}_{2}$ एक पूर्णांक है।
(i) दिखाइए कि \sim एक तुल्यता संबंध है।
(ii) उस तुल्यता वर्ग का ज्यामितीय विवरण दीजिए जिसमें $(0,0)$ है ।
(ख) यदि G एक सम कोटि का समूह है, तब सिद्ध कीजिए कि इसमें $a^{2}=e$ को संतुष्ट करने वाला अवयव $a \neq e$ है, जहाँ e, G का तत्समक अवयव है ।
(ग) दिखाइए कि रूप $\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$ के आव्यूहों का समुच्चय G, आव्यूह गुणन के अंतर्गत एक समूह बनाता है, जहाँ α एक वास्तविक संख्या है।
6. (क) क्या वलय $\frac{\mathbf{Z}_{7}[\mathrm{x}]}{\left\langle\mathrm{x}^{2}+\overline{3}\right\rangle}$ के शून्यंभावी अवयव हैं ? अपने उत्तर की पुष्टि कीजिए।
(ख) वलय \mathbf{Z}_{36} की सभी उच्चिष्ठ गुणजावलियाँ ज्ञात कीजिए।
(ग) मान लीजिए $\mathrm{M}_{2}(\mathbf{Z})$ पूर्णांकों पर सभी 2×2 आव्यूहों का वलय है और मान लीजिए

$$
R=\left\{\left.\left[\begin{array}{cc}
a & a-b \\
a-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbf{Z}\right\} .
$$

क्या $\mathrm{R}, \mathrm{M}_{2}(\mathbf{Z})$ का उपवलय है ? अपने उत्तर की पुष्टि कीजिए।
7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य ? अपने उत्तरों के कारण दीजिए।
(i) यदि G , कोटि n का समूह है और यदि d, n का विभाजक है, तब कोटि d के G के उपसमूह का अस्तित्व होता है।
(ii) सभी परिमेय संख्याओं के वलय \mathbf{Q} में उचित अतुच्छ उपवलय होते हैं, लेकिन कोई उचित अतुच्छ गुणजावलियाँ नहीं होती।
(iii) यदि समूह G का प्रत्येक उपसमूह प्रसामान्य है, तब G आबेली है।
(iv) 100 अवयवों वाले एक क्षेत्र का अस्तित्व होता है।
(v) वलय R पर घात n के किसी भी बहुपद के वलय R में ज़्यादा से ज़्यादा n मूल हो सकते हैं।

