No. of Printed Pages: 11

MTE-04/MTE-05

BACHELOR'S DEGREE PROGRAMME

MTE-04: ELEMENTARY ALGEBRA

&

MTE-05: ANALYTICAL GEOMETRY

Instructions:

- 1. Students registered for both MTE-04 & MTE-05 courses should answer both the question papers in two separate answer books entering their enrolment number, course code and course title clearly on both the answer books.
- 2. Students who have registered for MTE-04 or MTE-05 should answer the relevant question paper after entering their enrolment number, course code and course title on the answer book.

स्नातक उपाधि कार्यक्रम

एम.टी.ई.-04 : प्रारंभिक बीजगणित

एवं

एम.टी.ई.-05: वैश्लेषिक ज्यामिति

निर्देश :

- जो छात्र एम.टी.ई.-04 और एम.टी.ई.-05 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्न-पत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ़-साफ़ लिखकर दें।
- जो छात्र एम.टी.ई.-04 या एम.टी.ई.-05 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्न-पत्र के उत्तर उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ़-साफ़ लिखकर दें।

BACHELOR'S DEGREE PROGRAMME

Term-End Examination December, 2014

MATHEMATICS MTE-04: ELEMENTARY ALGEBRA

Time: $1\frac{1}{2}$ hours

Maximum Marks: 25

(Weightage: 70%)

Note: Question no. 1 is compulsory. Attempt any three questions from Q. No. 2 to 5. Use of calculators is not allowed.

1. Which of the following statements are true and which are false? Justify your answer giving valid proof or counterexample.

10

- (a) $A\setminus (B \cap C) = (A\setminus B) \cap (A\setminus C)$ for subsets A, B, C of a set U.
- (b) A fourth degree equation with real coefficients has a real root.
- (c) $\frac{1}{x iy} = x + iy$ for any real numbers x and y (at least one of them non-zero) and $i = \sqrt{-1}$.
- (d) $\sqrt{3}$ is a rational number.
- (e) Any system of two linear equations in two unknowns has finite number of solutions.

- 2. (a) Apply De Moivre's theorem to express $\cos 4\theta$ in terms of powers of $\cos \theta$.
 - (b) Prove that a real non-zero cube root of a positive real number is unique.
- 3. (a) Check if the following system of linear equations can be solved by Cramer's rule:

$$3x + y - 2z = -7$$

$$5x - 3y + 2z = 5$$

$$9x - 11y + 10z = 29$$

Obtain the solution.

- (b) Show that $n^n > 1.3.5 \dots (2n-1)$.
- 4. (a) If α , β , γ are the roots of a cubic equation, then find the sum of the cubes of the roots, for the equation $x^3 4x^2 + 6x 8 = 0$.
 - (b) Prove by induction that the product of any three consecutive natural numbers is divisible by 3.
- 5. (a) Show that

$$\begin{vmatrix} 1 & a & a^{3} \\ 1 & b & b^{3} \\ 1 & c & c^{3} \end{vmatrix} = (a - b) (b - c) (c - a) (a + b + c). 3$$

(b) For any subsets A, B, C of a set U, prove the following:

$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

3

2

3

2

3

स्नातक उपाधि कार्यक्रम सत्रांत परीक्षा दिसम्बर, 2014

गणित एम.टी.ई.-04 : प्रारंभिक बीजगणित

समय : $1\frac{1}{2}$ घण्टे

अधिकतम अंक : 25

(कुल का: 70%)

नोट: प्रश्न सं. 1 करना अनिवार्य है। प्रश्न सं. 2 से 5 में से कोई तीन प्रश्नों को हल कीजिए। कैल्कुलेटरों के प्रयोग की अनुमित नहीं है।

 निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? वैध उपपत्ति या प्रति-उदाहरण देते हुए अपने उत्तर की पृष्टि कीजिए ।

- (क) समुच्चय U के उप-समुच्चयों A, B, C के लिए
 A\(B ∩ C) = (A\(B) ∩ (A\(C)).
- (ख) वास्तविक गुणांक वाले घात 4 के समीकरण का एक वास्तविक मूल होता है।
- (ग) किसी भी वास्तविक संख्या x और y (कम-से-कम दोनों में से एक शून्य नहीं हो) और $i = \sqrt{-1}$ के लिए $\frac{1}{x-iy} = x+iy$.
- (घ) √3 एक परिमेय संख्या है ।
- (ङ) दो अज्ञात राशियों में किसी भी दो रैखिक समीकरणों के निकाय के हलों की संख्या परिमित होती है।

2.	(क)	द मॉयवर प्रमेय को लागू करके $\cos 4\theta$ को $\cos \theta$ की
		घात के पदों में व्यक्त कीजिए।

3

(ख) सिद्ध कीजिए कि धनात्मक वास्तविक संख्या का वास्तविक शून्येतर घन मूल अद्वितीय होता है।

2

3. (क) जाँच कीजिए कि क्या निम्नलिखित रैखिक समीकरण निकाय को क्रेमर नियम से हल किया जा सकता है :

$$3x + y - 2z = -7$$

$$5x - 3y + 2z = 5$$

9x - 11y + 10z = 29 इसका हल प्राप्त कीजिए ।

(ख) दिखाइए कि $n^n > 1.3.5 ... (2n - 1)$.

योगफल ज्ञात कीजिए:

3

2

4. (क) यदि α, β, γ त्रिघात समीकरण के मूल हैं, तब निम्नलिखित समीकरण के लिए मूलों के घनों का

 $x^3 - 4x^2 + 6x - 8 = 0$

2

(ख) आगमन से सिद्ध कीजिए कि किन्हीं तीन क्रमागत प्राकृतिक संख्याओं का गुणनफल 3 से विभाजित होता है।

3

5. (क) दिखाइए कि

$$\begin{vmatrix} 1 & a & a^{3} \\ 1 & b & b^{3} \\ 1 & c & c^{3} \end{vmatrix} = (a - b) (b - c) (c - a) (a + b + c). 3$$

(ख) समुच्चयं U के किन्हीं उपसमुच्चयों A, B, C के लिए, निम्नलिखित को सिद्ध कीजिए :

2

 $(A \cap B) \times C = (A \times C) \cap (B \times C)$

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination December, 2014

ELECTIVE COURSE: MATHEMATICS MTE-05: ANALYTICAL GEOMETRY

Time: $1\frac{1}{2}$ hours

Maximum Marks: 25

(Weightage: 70%)

Note: Question no. 5 is compulsory. Answer any three questions from question no. 1 to 4. Use of calculators is not allowed.

- 1. (a) Find the equation of the conic section with eccentricity 1, (1, 0) as its focus and y = x as its directrix.
 - (b) Trace the surface $\frac{x^2}{9} + \frac{y^2}{25} + \frac{z^2}{4} = 1$.

 Describe its sections by the planes $z = \pm 4$.
- 2. (a) A circle cuts the parabola $y^2 = 4ax$ in the points $(at_i^2, 2at_i)$ for i = 1, 2, 3, 4. Prove that $t_1 + t_2 + t_3 + t_4 = 0$.
 - (b) Show that if the sum of the squares of the distances of (a, b, c) from the planes x + y + z = 0, x = z and x + z = 2y is 3, then $a^2 + b^2 + c^2 = 3$.

3

2

- 3. Find the equation of the cylinder whose (a) axis is x = y = -z and radius is 2.
- 2
- Find the equation of the line parallel to (b) y + x + 1 = 0 and passing through (1, 1). What is the angle between the line obtained and 2x = y?
- 3

3

4. (a) Show that the conicoid

$$3x^{2} + 7y^{2} + 3z^{2} + 10yz - 2zx + 10xy +$$

 $4x - 12y - 4z + 1 = 0$

has a centre, and find the centre.

Find the equation of a right circular cone (b) at O, axis at OX with vertex semi-vertical angle $\frac{\pi}{3}$. What will be its new equation when the origin is shifted to (0, 1, -1)?

2

Are the following statements true or false? 5. Justify your answer.

- The relation between the cartesian and the (a) polar co-ordinates is $x = r \sin \theta$, $y = r \cos \theta$ and $\theta = \tan^{-1} \frac{y}{x}$.
- **(b)** The conditions on m and c, so that y = mx + cwill be a tangent to $x^2 = 4ay$ are $m \neq tan \frac{\pi}{2}$ and $c = -am^2$.
- (c) The line $\frac{x}{2} = y = \frac{z}{3}$ is parallel to the x-axis.

- (d) If $s = \frac{x^2}{9} + \frac{y^2}{4} 1 = 0$ and $s_1 = xy 9 = 0$, then the condition on k for which $s + ks_1 = 0$ will be an ellipse is $k^2 < \frac{1}{9}$.
- (e) The condition for a line with direction ratios α , β , γ to be a tangent to the central conicoid $ax^2 + by^2 = 2z$ at (x_0, y_0, z_0) is $ax_0\alpha by_0\beta = \gamma$.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा दिसम्बर, 2014

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

समय : 1 $\frac{1}{2}$ घण्टे

अधिकतम अंक : 25

(कुल का: 70%)

नोट: प्रश्न सं. 5 करना अनिवार्य है। प्रश्न सं. 1 से 4 में से किन्हीं तीन प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों के प्रयोग की अनुमति नहीं है।

1. (क) उत्केन्द्रता 1, नाभि (1, 0) तथा उसकी नियता y = x वाले शांकव परिच्छेद का समीकरण ज्ञात कीजिए ।

2

(ख) पृष्ठ $\frac{x^2}{9} + \frac{y^2}{25} + \frac{z^2}{4} = 1$ को अनुरेखित कीजिए । समतलों $z = \pm 4$ द्वारा इसके परिच्छेदों का विवरण दीजिए ।

3

2. (क) एक वृत्त परवलय $y^2 = 4ax$ को बिन्दुओं $(at_i^2, 2at_i)$, जहाँ $i=1,\,2,\,3,\,4$ है, पर प्रतिच्छेद करता है। सिद्ध कीजिए कि $t_1+t_2+t_3+t_4=0$.

2

(ख) यदि बिन्दु (a, b, c) की समतलों x + y + z = 0, x = zऔर x + z = 2y से दूरियों के वर्गों का योगफल 3 है, तो दिखाइए कि $a^2 + b^2 + c^2 = 3$ है।

3 P.T.O. 3. (क) उस बेलन का समीकरण ज्ञात कीजिए जिसका अक्ष x = y = -z तथा त्रिज्या 2 है ।

2

(ख) y + x + 1 = 0 के समान्तर तथा (1, 1) से गुज़रने वाली रेखा का समीकरण ज्ञात कीजिए । प्राप्त रेखा और 2x = y के बीच का कोण क्या है ?

3

4. (क) दिखाइए कि शांकवज

$$3x^{2} + 7y^{2} + 3z^{2} + 10yz - 2zx + 10xy +$$

 $4x - 12y - 4z + 1 = 0$

का केन्द्र है, तथा केन्द्र ज्ञात कीजिए। 3

(ख) शीर्ष O, अक्ष OX तथा अर्ध-शीर्ष कोण $\frac{\pi}{3}$ वाले लंब-वृत्तीय शंकु का समीकरण ज्ञात कीजिए । यदि मूल-बिन्दु को (0, 1, -1) पर विस्थापित कर दिया जाए, तो इसका नया समीकरण क्या होगा ?

2

5. क्या निम्नलिखित कथन सत्य हैं अथवा असत्य ? अपने उत्तर की पृष्टि कीजिए।

10

- (क) कार्तीय तथा ध्रुवीय निर्देशांकों के बीच सम्बन्ध $x = r \sin \theta, \ y = r \cos \theta \quad \text{और} \quad \theta = \tan^{-1} \frac{y}{x} \quad \xi \quad I$
- (ख) y = mx + c के $x^2 = 4ay$ की स्पर्श रेखा होने के लिए m तथा c पर प्रतिबंध $m \neq tan \frac{\pi}{2}$ और $c = -am^2$ हैं।
- (ग) रेखा $\frac{x}{2} = y = \frac{z}{3}$, x-अक्ष के समान्तर है।

MTE-05

- (घ) यदि $s = \frac{x^2}{9} + \frac{y^2}{4} 1 = 0$ और $s_1 = xy 9 = 0$ है, तो $s + ks_1 = 0$ एक दीर्घवृत्त होगा यदि k पर प्रतिबंध $k^2 < \frac{1}{9}$ है ।
- (ङ) दिक्-अनुपातों α , β , γ वाली रेखा के केन्द्रीय शांकवज $ax^2 + by^2 = 2z \text{ की बिन्दु } (x_0, y_0, z_0) \text{ पर स्पर्श रेखा }$ होने के लिए प्रतिबंध $ax_0\alpha by_0\beta = \gamma$ है ।