BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2014

ELECTIVE COURSE : MATHEMATICS MTE-13 : DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 1 is compulsory. Answer any four questions from questions number 2 to 7 . Use of calculators is not allowed.

1. Which of the following statements are true and which are false ? Justify your answers with a short proof or a counter-example.
(a) For any two logical statements p and q, $[(p \vee q) \wedge \sim q] \Rightarrow p$.
(b) " $3^{n}+n$ is an odd number for infinitely many values of $n \in \mathbf{N}$ " is a proposition.
(c) The order and degree of the homogeneous recurrence relation $a_{n}=a_{n-1}^{3}+a_{n-2} a_{n-3}$ are 3 and 2, respectively.
(d) The number of partitions of 6 is 10 .
(e) The edge chromatic number of the graph K_{6} is 5 .
2. (a) Consider a set $X=\{0,1,2\}$. Check whether or not the set $\mathscr{P}(\mathrm{X})$, (the power set of X) is a Boolean algebra under the usual operations union, intersection and complementation in it.
(b) Find a particular solution of the recurrence relation, $b_{n}-4 b_{n-1}+4 b_{n-2}=3 \times 2^{n}(n \geq 2)$. 3
(c) Check whether or not the complete graph K_{5} has an Eulerian circuit.
3. (a) Using generating function, find a formula for a_{n} which satisfies the recurrence relation,

$$
\begin{equation*}
a_{n}=n+2 a_{n-1}(n \geq 1) \text { and } a_{0}=1 \tag{5}
\end{equation*}
$$

(b) How many permutations are there of the letters taken all at a time, of the word :

INDISTINGUISHABLE
(c) Let T be a graph such that every two distinct vertices of T are connected by a unique path. Prove that T is a tree.
4. (a) Using the principle of mathematical induction, prove that $1 \times 1!+2 \times 2!+3 \times 3!+\ldots+n \times n!=(n+1)!-1$.
(b) If a 6-digit number is chosen at random, then what is the probability that the product of its digits is 24 ?

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
December, 2014
\section*{ELECTIVE COURSE : MATHEMATICS

MTE-13 : DISCRETE MATHEMATICS}

Time: 2 hours
Maximum Marks : 50
(Weightage: 70\%)
Note: Question no. 1 is compulsory. Answer any four questions from questions number 2 to 7 . Use of calculators is not allowed.

1. Which of the following statements are true and which are false ? Justify your answers with a short proof or a counter-example.
(a) For any two logical statements p and q, $[(p \vee q) \wedge \sim q] \Rightarrow p$.
(b) " $3^{\mathrm{n}}+\mathrm{n}$ is an odd number for infinitely many values of $n \in \mathbf{N}$ " is a proposition.
(c) The order and degree of the homogeneous recurrence relation $a_{n}=a_{n-1}^{3}+a_{n-2} a_{n-3}$ are 3 and 2, respectively.
(d) The number of partitions of 6 is 10 .
(e) The edge chromatic number of the graph K_{6} is 5 .
2. (a) Consider a set $X=\{0,1,2\}$. Check whether or not the set $\mathscr{P}(\mathrm{X})$, (the power set of X) is a Boolean algebra under the usual operations union, intersection and complementation in it.
(b) Find a particular solution of the recurrence relation, $b_{n}-4 b_{n-1}+4 b_{n-2}=3 \times 2^{n}(n \geq 2)$.
(c) Check whether or not the complete graph K_{5} has an Eulerian circuit.
3. (a) Using generating function, find a formula for a_{n} which satisfies the recurrence relation,

$$
a_{n}=n+2 a_{n-1}(n \geq 1) \text { and } a_{0}=1
$$

(b) How many permutations are there of the letters taken all at a time, of the word :

INDISTINGUISHABLE
(c) Let T be a graph such that every two distinct vertices of T are connected by a unique path. Prove that T is a tree.
4. (a) Using the principle of mathematical induction, prove that $1 \times 1!+2 \times 2!+3 \times 3!+\ldots+n \times n!=(n+1)!-1$.
(b) If a 6-digit number is chosen at random, then what is the probability that the product of its digits is 24 ?
(c) Draw the complement of the following graph :

Is the complement planar ? Justify your answer.
5. (a) Find the disjunctive normal form of the Boolean expression

$$
X(a, b, c)=\left(b \wedge c^{\prime}\right) \vee(a \vee c)^{\prime}
$$

(b) Find the number of distinct solutions in non-negative integers and the number of distinct solutions in positive integers of the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=12$.
(c) A school has 100 students with 40 taking French, 40 taking Latin and 40 taking German. 20 students are taking French and Latin, 20 students are taking Latin and German, 20 students are taking French and German and 10 students are taking all three languages. Find out how many students are taking no languages.
(d) Can you construct a graph with ten vertices in which two vertices have degree 2 each, three vertices have degree 3 each and the remaining vertices have degree 4 each ? Give reasons for your answer.
6. (a) Find the sum of the following series using exponential generating functions :

$$
\frac{1^{2}}{0!}-\frac{2^{2}}{1!}+\frac{3^{2}}{2!}-\ldots+(-1)^{n} \cdot \frac{(n+1)^{2}}{n!} \ldots
$$

(b) What is the coefficient of x^{35} in the expansion of $\left(1+x^{2}+2 x^{11}\right)^{200}$?
(c) Find $\delta(G), \Delta(G)$ and $\chi(G)$ of the following graph G:

Justify your answer.
7. (a) Draw the truth table of

$$
(p \wedge q) \vee(\sim q \rightarrow r)
$$

(b) Define the $\mathrm{n}^{\text {th }}$ Bell number. Using the formula for Bell numbers, or otherwise, determine B_{5}.
(c) Find the general solution for the recurrence relation:

$$
a_{n}-6 a_{n-1}+9 a_{n-2}=3^{n}
$$

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

दिसम्बर, 2014

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-13 : विविक्त गणित

समय : 2 घण्टे अधिकतम अंक: 50
(कुल का : 70\%)
नोट: प्रश्न सं. 1 करना अनिवार्य है। प्रश्न संख्या 2 से 7 में से कोई चार प्रश्न कीजिए । कैल्कुलेटरों का प्रयोग करने की अनुमति नहीं है।

1. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तरों की लघु उपपत्ति या प्रत्युदाहरण द्वारा पुष्टि कीजिए।
(क) किन्हीं दो तार्किक कथनों p और q के लिए, $[(p \vee q) \wedge \sim q] \Rightarrow p$ होता है ।
(ख) $\mathrm{n} \in \mathbf{N}$ के अनेक असंख्य मानों के लिए, $3^{\mathrm{n}}+\mathrm{n}$ एक विषम संख्या है" यह एक तर्क-वाक्य है।
(ग) समघात पुनरावृत्ति संबंध $a_{n}=a_{n-1}^{3}+a_{n-2} a_{n-3}$ की कोटि और घात क्रमशः 3 और 2 हैं।
(घ) संख्या 6 के विभाजनों की संख्या 10 है।
(ङ) ग्राफ K_{6} की कोर-वर्णिक संख्या 5 है ।
2. (क) समुच्चय $X=\{0,1,2\}$ को लीजिए। जाँच कीजिए कि समुच्च्य $\mathscr{P}(\mathrm{X}),(\mathrm{X}$ का घात समुच्च्य) सामान्य संक्रियाओं सर्वनिष्ठ, उभयनिष्ठ और पूरकीकरण के अंतर्गत एक बूलीय बीजावली है या नहीं।
(ख) पुनरावृत्ति संबंध
$\mathrm{b}_{\mathrm{n}}-4 \mathrm{~b}_{\mathrm{n}-1}+4 \mathrm{~b}_{\mathrm{n}-2}=3 \times 2^{\mathrm{n}}(\mathrm{n} \geq 2)$
का एक विशेष हल ज्ञात कीजिए।
3
(ग) जाँच कीजिए कि पूर्ण ग्राफ K_{5} में ऑयलरी परिपथ है या नहीं।
3. (क) जनक फलन के प्रयोग द्वारा, a_{n} का एक सूत्र ज्ञात कीजिए जो पुनरावृत्ति संबंध $a_{n}=n+2 a_{n-1}(n \geq 1)$ और $\mathrm{a}_{0}=1$ को संतुष्ट करता हो ।
(ख) शब्द INDISTINGUISHABLE के अक्षरों के कितने क्रमचय होंगे, जबकि एक बार में सभी अक्षरों को लिया गया हो ?
(ग) मान लीजिए T एक ऐसा ग्राफ है जिसके प्रत्येक दो भिन्न शीर्ष एक अद्वितीय पथ से जुड़े हैं । सिद्ध कीजिए कि \mathbf{T} एक वृक्ष है।
4. (क) गणितीय आगमन नियम द्वारा सिद्ध कीजिए कि $1 \times 1!+2 \times 2!+3 \times 3!+\ldots+n \times n!=(n+1)!-1$.
(ख) यदि 6 -अंकों वाली एक संख्या यादृच्छया चुनी जाती है, तो क्या प्रायिकता होगी कि इसके अंकों का गुणनफल 24 होगा ?
(ग) निम्नलिखित ग्राफ का पूरक आरेखित कीजिए :

क्या पूरक समतलीय है ? अपने उत्तर की पुष्टि कीजिए। 4
5. (क) बूलीय व्यंजक $X(a, b, c)=\left(b \wedge c^{\prime}\right) \vee(a \vee c)^{\prime}$ का वियोजनीय प्रसामान्य समघात ज्ञात कीजिए।
(ख) समीकरण $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=12$ के ऋणेतर पूर्णांकों में विभिन्न हलों की संख्या तथा धन पूर्णांकों में विभिन्न हलों की संख्या ज्ञात कीजिए।
(ग) किसी विद्यालय में कुल 100 छात्र हैं, जिनमें से 40 फ्रांसीसी, 40 लैटिन और 40 जर्मन भाषा ले रहे हैं । 20 छात्र फ्रांसीसी एवं लैटिन, 20 छात्र लैटिन एवं जर्मन, 20 छात्र फ्रांसीसी एवं जर्मन भाषाएँ ले रहे हैं और 10 छात्र सभी तीनों भाषाएँ ले रहे हैं । ज्ञात कीजिए कि कितने छात्र कोई भी भाषा नहीं ले रहे हैं ।
(घ) क्या आप 10 शीर्षों वाला ऐसा ग्राफ बना सकते हैं जिसमें 2 शीर्षों की कोटि 2 है, 3 शीर्षों की कोटि 3 है और शेष शीर्षों की कोटि 4 है ? अपने उत्तर के कारण दीजिए।
6. (क) चरघातांकी जनक फलनों का प्रयोग करते हुए, निम्नलिखित श्रेणी का योगफल ज्ञात कीजिए :

$$
\frac{1^{2}}{0!}-\frac{2^{2}}{1!}+\frac{3^{2}}{2!}-\ldots+(-1)^{n} \cdot \frac{(n+1)^{2}}{n!} \ldots
$$

(ख) $\left(1+\mathrm{x}^{2}+2 \mathrm{x}^{11}\right)^{200}$ के प्रसार में x^{35} का गुणांक क्या है ?
(ग) नीचे दिए गए ग्राफ G के लिए $\delta(\mathrm{G}), \Delta(\mathrm{G})$ और $\chi(\mathrm{G})$ ज्ञात कीजिए :

अपने उत्तर की पुष्टि कीजिए ।
7. (क) $(\mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{r})$ की सत्य सारणी बनाइए।
(ख) n वीं बैल संख्या को परिभाषित कीजिए। बैल संख्याओं के सूत्र का प्रयोग करके या अन्यथा, B_{5} ज्ञात कीजिए । 3
(ग) पुनरावृत्ति संबंध $a_{n}-6 a_{n-1}+9 a_{n-2}=3^{n}$ का व्यापक हल ज्ञात कीजिए।

