No. of Printed Pages : 12
MTE-11

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
December, 2014

ELECTIVE COURSE : MATHEMATICS MTE-11 : PROBABILITY AND STATISTICS

Time : 2 hours
Maximum Marks : 50
(Weightage: 70\%)

Note: Question no. 7 is compulsory. Answer any four questions from questions no. 1 to 6. Use of calculators is not allowed.

1. (a) Let $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ and E_{4} be arbitrary events. Write the following events in set notations :
(i) not more than one of $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}$.
(ii) one and only one of $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}$.
(iii) E_{1} and at least one of $\mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}$.
(iv) none of E_{2}, E_{3} and E_{4} using E_{1}.
(b) Let the probability density function of r.v. X be
$f(x)=\left\{\begin{array}{ccc}1+x & ; & -1<x \leq 0 \\ 1-x & ; & 0<x<1 \\ 0 & ; & \text { otherwise }\end{array}\right.$
and if $u=X$ and $v=X^{2}$, find $\operatorname{Cov}(u, v)$. Also check the independence of u and v.
2. (a) For a mesokurtic distribution with standard deviation 5 , find fourth central moment m_{4}.
(b) The probability that a car will have a flat tyre while crossing a certain bridge is 0.00005 . Find the probability that, among 10,000 cars crossing the bridge,
(i) exactly two cars will have a flat tyre.
(ii) at most two cars will have a flat tyre.
(c) Let X_{1} be an observation from an exponential distribution with the p.d.f.

$$
\mathrm{f}(\mathrm{x})=\frac{1}{\theta} \mathrm{e}^{-\mathrm{x} / \theta} ; \mathrm{x}>0
$$

Test the null hypothesis that the mean of the distribution is $\theta=2$ against the alternative hypothesis that it is $\theta=5$. The null hypothesis is accepted if and only if the observed value of the random variable is less than 3 . Find the probabilities of type-I and type-II errors.
3. (a) The mean and standard deviation of 20 items is found to be 10 and 2 respectively. At the time of checking it was found that one item having value 8 was incorrect. Calculate the mean and standard deviation if the wrong item is omitted.
(b) Let X be a gamma variable with parameters α and λ, having $\mathrm{E}(\mathrm{X})=6$ and $\operatorname{Var}(\mathrm{X})=3$. Find α and λ. Also, find the m.g.f. of a gamma variable, and hence verify that mean of X is 6 and variance of X is 3 using m.g.f.
4. (a) For married couples living in a certain locality, the probability that the husband will vote in a school board election is $0 \cdot 21$, the probability that the wife will vote in the election is 0.28 and the probability that they both will vote is $0 \cdot 15$. What is the probability that
(i) at least one of them will vote?
(ii) neither of them will vote?
(b) The mean and standard deviation of a variable x are m and σ respectively. Obtain the mean and standard deviation of ($\mathrm{ax}+\mathrm{b}$)/c, where a, b and c are constants.
(c) If X is a random variable such that $\mathrm{E}(\mathrm{X})=3$ and $E\left(X^{2}\right)=13$, determine a lower bound for $\mathrm{P}(-2<\mathrm{X}<8)$.
5. (a) A die is thrown 60 times with the following results:

Face of die	1	2	3	4	5	6
Frequency	8	7	12	8	14	11

Test that the die is unbiased at 5% level of significance. Given that at 5,6 and 7 d.f. the values of χ^{2} are $11.070,12.592$ and 14.067 respectively.
(b) Consider the joint probability density function

$$
f(x, y)=y^{2} e^{-y(x+1)} ; x \geq 0, y \geq 0
$$

Are both x and y regressions linear ? Give reasons for your answer.
6. (a) The mean I.Q. of a large number of children of age 14 was 100 and standard deviation 16. Assuming that the distribution was normal, find
(i) the percentage of children having I.Q. under 80.
(ii) the limits in which the I.Q. of the middle 40% of the children will lie.

You may like to use the following values :

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Z}>1.25)=0.1056 \\
& \mathrm{P}(\mathrm{Z}<-0.525)=0.3
\end{aligned}
$$

(b) 6 observations on (X, Y) yielded the following data :

$$
\begin{aligned}
& \Sigma X_{i}=30, \Sigma Y_{i}=180, \Sigma X_{i} Y_{i}=1000 \\
& \Sigma X_{i}^{2}=200, \Sigma Y_{i}^{2}=5642
\end{aligned}
$$

(i) Determine the correlation coefficient between X and Y.
(ii) Given $X=10$, what will be the predicted value of Y ?
(iii) Given $Y=15$, what will be the predicted value of X ?
7. Which of the following statements are true or false ? Give short proof or counter example in your answer.
(a) If the correlation coefficient between X and Y is -0.8 , then the correlation coefficient between $2 X-1$ and $-3 Y-1$ is -0.48 .
(b) If X and Y are independent binomial variates with parameters $\left(n_{1}, p_{1}\right)$ and ($\mathrm{n}_{2}, \mathrm{p}_{2}$) respectively, then $\mathrm{X}+\mathrm{Y}$ has binomial distribution with parameters

$$
\left(\mathrm{n}_{1}+\mathrm{n}_{2}, \mathrm{p}_{1}+\mathrm{p}_{2}\right)
$$

(c) The function defined as

$$
f(x)=\left\{\begin{array}{cc}
|x| & ;-1<x<1 \\
0 & ; \text { otherwise }
\end{array}\right.
$$

is a probability density function.
(d) For a normal distribution with mean μ and variance σ^{2}, the hypotheses
$\mathrm{H}_{1}: \mu=\mu_{0}, \sigma^{2}=1$ and
$\mathrm{H}_{2}: \mu=\mu_{0}, \sigma^{2} \geq 1$ are simple hypotheses.
(e) In a problem of testing of a simple hypothesis against a simple alternative, if the probability of type-I error is known to be 0.06 , then the power of the test will be 0.94 .

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)
सत्रांत परीक्षा
दिसम्बर, 2014

ऐच्छिक पाठ्यक्रम : गणित
 एम.टी.ई.-11 : प्रायिकता और सांख्यिकी

समय : 2 घण्टे
अधिकतम अंक : 50
(कुल का : 70\%)
नोट : प्रश्न सं. 7 अनिवार्य है । प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए । कैल्कुलेटरों का प्रयोग करने की अनुमति नहीं है।

1. (क) मान लीजिए कि $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ और E_{4} स्वैच्छिक घटनाएँ हैं । निम्नलिखित घटनाओं को समुच्चय संकेतनों में लिखिए :
(i) $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ और E_{4} में एक से अधिक नहीं ।
(ii) $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ और E_{4} में से केवल एक ।
(iii) E_{1} और कम-से-कम $\mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}$ में से एक ।
(iv) E_{1} के साथ $\mathrm{E}_{2}, \mathrm{E}_{3}$ और E_{4} में से कोई नहीं ।
(ख) मान लीजिए कि r.v., X का प्रायिकता घनत्व फलन निम्नलिखित है :
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ccc}1+\mathrm{x} & ; & -1<\mathrm{x} \leq 0 \\ 1-\mathrm{x} & ; & 0<\mathrm{x}<1 \\ 0 & ; & \text { अन्यथा }\end{array}\right.$
और यदि $u=X$ और $v=X^{2}$ हो, तो $\operatorname{Cov}(u, v)$ ज्ञात कीजिए। u और v के स्वातंत्य की भी जाँच कीजिए। 6
2. (क) मानक विचलन 5 वाले मध्यककुदी बंटन के लिए, चतुर्थ केंद्रीय आघूर्ण m_{4} ज्ञात कीजिए।
(ख) किसी पुल को पार करते समय एक कार के टायर सपाट होने की प्रायिकता 0.00005 है । पुल पार करने वाली 10,000 कारों के लिए वह प्रायिकता ज्ञात कीजिए जबकि
(i) ठीक 2 कारों के टायर सपाट होंगे ।
(ii) ज़्यादा-से-ज़्यादा 2 कारों के टायर सपाट होंगे ।
(ग) मान लीजिए कि X_{1}, एक चरघातांकी बंटन का एक प्रेक्षण है, जिसका प्रायिकता घनत्व फलन

$$
f(x)=\frac{1}{\theta} e^{-x / \theta} ; x>0
$$

है। निराकरणीय परिकल्पना कि बंटन का माध्य $\theta=2$ है की प्रतिकूल वैकल्पिक परिकल्पना कि माध्य $\theta=5$ है, का परीक्षण कीजिए। निराकरणीय परिकल्पना केवल तभी स्वीकार की जाती है यदि और केवल यदि यादृच्छिक चर का प्रेक्षित मान 3 से कम हो। टाइप-I और टाइप-II त्रुटियों की प्रायिकताएँ ज्ञात कीजिए ।
3. (क) 20 पदों का माध्य और मानक विचलन क्रमशः 10 और 2 पाया गया है । जाँच करते समय यह पाया गया कि मान 8 वाला एक पद ग़लत है। यदि ग़लत पद को हटा दिया जाए तो माध्य और मानक विचलन परिकलित कीजिए।
(ख) मान लीजिए X , प्राचल α और λ वाला एक गामा चर है जिसके $\mathrm{E}(\mathrm{X})=6$ और $\operatorname{Var}(\mathrm{X})=3$ हैं । α और λ ज्ञात कीजिए। गामा चर का आघूर्ण जनक फलन भी ज्ञात कीजिए और इस प्रकार सिद्ध कीजिए कि आघूर्ण जनक फलन से X का माध्य 6 और X का प्रसरण 3 है।
4. (क) एक मुहल्ले में रहने वाले वैवाहिक जोड़ों में, पति के एक स्कूल बोर्ड चुनाव में वोट देने की प्रायिकता 0.21 है, पत्नी के चुनाव में वोट देने की प्रायिकता 0.28 है और दोनों के वोट देने की प्रायिकता 0.15 है। इस बात की प्रायिकता क्या होगी कि
(i) उनमें से कम-से-कम एक वोट देगा?
(ii) उनमें से कोई भी वोट नहीं देगा ?
(ख) एक चर x का माध्य और मानक विचलन क्रमशः m और σ है। $(\mathrm{ax}+\mathrm{b}) / \mathrm{c}$ का माध्य और मानक विचलन ज्ञात कीजिए जबकि a, b और c अचर हैं ।
(ग) यदि एक यादृच्छिक चर X इस प्रकार है कि $\mathrm{E}(\mathrm{X})=3$ और $\mathrm{E}\left(\mathrm{X}^{2}\right)=13$ है, तो $\mathrm{P}(-2<\mathrm{X}<8)$ का निम्न परिबंध ज्ञात कीजिए।
5. (क) एक पासे को 60 बार फेंकने से निम्नलिखित परिणाम प्राप्त होते हैं :

पासे का मुख	1	2	3	4	5	6
बारम्बारता	8	7	12	8	14	11

5% सार्थकता स्तर पर परीक्षण कीजिए कि पासा अनभिनत है । दिया गया है कि 5,6 और 7 स्वातंत्र्य कोटि के लिए χ^{2} के मान क्रमशः $11.070,12.592$ और 14.067 हैं ।
(ख) निम्नलिखित संयुक्त प्रायिकता घनत्व फलन लीजिए :

$$
f(x, y)=y^{2} e^{-y(x+1)} ; x \geq 0, y \geq 0 .
$$

क्या दोनों x और y समाश्रयण रैखिक हैं ? अपने उत्तर का कारण दीजिए।
6. (क) 14 वर्ष की आयु के बच्चों की एक बड़ी संख्या का माध्य I.Q. 100 और मानक विचलन 16 था। मान लीजिए कि बंटन प्रसामान्य था, तो निम्नलिखित ज्ञात कीजिए :
(i) 80 से कम I.Q. वाले बच्चों का प्रतिशत।
(ii) वह सीमा जिसके लिए बीच में 40% बच्चों की I.Q. होगी ।

आप निम्नलिखित मानों का प्रयोग कर सकते हैं :

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Z}>1.25)=0.1056 \\
& \mathrm{P}(\mathrm{Z}<-0.525)=0.3
\end{aligned}
$$

