B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

$0088{ }^{5}$ December, 2014

BIME-034 : HEAT AND MASS TRANSFER

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. Assume missing data suitably, if any. Use of scientific calculator is allowed. Use of heat and mass transfer data book is permitted.

1. (a) Derive the expression for temperature distribution and heat flow through cylindrical system.
(b) Derive an expression for temperature distribution for sphere with uniform heat generation.
2. (a) Derive an expression for overall heat transfer coefficient for a composite wall.
(b) A steam pipe with ID and OD as 100 mm and $140 \mathrm{~mm}(\mathrm{k}=50 \mathrm{~W} / \mathrm{mK})$ is covered with two layers of insulation 35 mm and 50 mm thick. The inner surface of the pipe is $300^{\circ} \mathrm{C}$ and the surface temperature of insulation is $50^{\circ} \mathrm{C}$. The thermal conductivities of insulation materials are 0.16 and $0.085 \mathrm{~W} / \mathrm{mK}$. Determine the heat loss from the pipe and the layer contact temperature.
3. (a) One end of a long rod is inserted into a furnace and the other end projects into the air at $20^{\circ} \mathrm{C}$. Under steady state conditions, the temperature of the rod measured at two points 100 mm apart was found to be $120^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. If the diameter of the rod is 25 mm and the thermal conductivity of the fin is $120 \mathrm{~W} / \mathrm{mK}$, make the calculations for surface heat transfer coefficient.
(b) An alloy plate of $300 \times 300 \times 4 \mathrm{~mm}$ size at $210^{\circ} \mathrm{C}$ is suddenly quenched into liquid oxygen at $-183^{\circ} \mathrm{C}$. Determine the time required for the plate to reach a temperature of $-60^{\circ} \mathrm{C}$. Take
$\mathrm{h}=20,000 \mathrm{~kJ} / \mathrm{hr} \mathrm{m}{ }^{2} \mathrm{~K}, \mathrm{C}=0.8 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, $\rho=3,000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}=214 \mathrm{~W} / \mathrm{mK}$.
4. (a) Define LMTD and derive an expression for LMTD of a parallel flow heat exchanger.
(b) Hot fluid ($\mathrm{C}_{\mathrm{p}}=1.045 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$) entering the counter flow Hx at $1000^{\circ} \mathrm{C}$ has a mass flow rate of $1 \mathrm{~kg} / \mathrm{s}$ and cold fluid $\left(\mathrm{C}_{\mathrm{p}}=4.48 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}\right.$) leaves at $850^{\circ} \mathrm{C}$ and has a mass flow rate of $0.25 \mathrm{~kg} / \mathrm{s}$. Determine the exit temperature of the hot fluid and inlet temperature of the cold fluid. Take $\mathrm{U}=88.5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{~A}=10 \mathrm{~m}^{2}$.
5. (a) Derive an expression for radiation heat exchange between two large parallel planes.
(b) The net radiation from the surface of the two parallel plates maintained at temperatures T_{1} and T_{2} is to be reduced by 79 times. Calculate the number of screens to be placed between the two surfaces to achieve this reduction in heat exchange assuming ζ of screen as 0.05 and that of surfaces as 0.8 .
6. (a) Explain the concept of thermal boundary layer over a flat plate. Define Reynolds and Nusselt numbers.
(b) Air at $30^{\circ} \mathrm{C}$ flows with a velocity of $3 \mathrm{~m} / \mathrm{s}$ over a plate $1.0 \times 0.6 \mathrm{~m}$. The top surface of the plate is maintained at $90^{\circ} \mathrm{C}$. Determine the heat lost by the plate. Take properties of air at mean tamperature : $\rho=1.06 \mathrm{~kg} / \mathrm{m}^{3}, \quad \mathrm{v}=18.97 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, $C_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{k}=0.02894 \mathrm{~W} / \mathrm{mK}$.
7. (a) What are the types of condensation processes ? Briefly explain the dropwise condensation.

(b) Define Biot and Fourier numbers. Explain
the significance of these numbers in
unsteady state heat conduction. 4
(c) Explain diffusion mass transfer. 4

