Maximum Marks: 70

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI) / ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRICAL ENGINEERING (ACELVI)

00035 Term-End Examination December, 2014

BIEE-028 : ELECTRICAL MACHINES THEORY - II

Note: Question no. 1 is compulsory. Attempt any

4 questions out of 2 to 8. All questions carry equal

marks.

Time: 2 hours

- 1. (a) An alternator is said to be over-excited when it is operating at
 - (i) unity p.f.
 - (ii) leading p.f.
 - (iii) lagging p.f.
 - (iv) None of the above
 - (b) The rotor of a salient pole alternator has 24 poles. The number of cycles of e.m.f. in one revolution is ______.
 - (c) A synchronous motor has small starting torque. (True/False)

(d)	An induction motor when started on load, does not accelerate upto full speed but runs
	at $\frac{1}{7}$ th normal speed. The motor is said to
	be
(e)	Why is the number of stator slots in an induction motor not an exact multiple of the number of rotor slots?
(f)	Which of the following single phase motors

- will operate at high power factor?

 (i) Shaded pole motor
 - (ii) Capacitor run motor
 - (iii) Split-phase motor
 - (iv) Capacitor start motor
- (g) Which motor has unsymmetrical rotor?
 - (i) Universal motor
 - (ii) Shaded pole motor
 - (iii) Split-phase motor
 - (iv) Reluctance motor

 $7 \times 2 = 14$

2. Explain the following:

14

- (a) Synchronous motor always runs at synchronous speed.
- (b) Field winding of synchronous generator is placed on rotor.
- **3.** Derive and draw the torque-slip characteristics of a 3-phase induction motor. Show the braking and generating regions, explaining the particular values of slips in these two regions.

14

4.	(a)	Why should the auxiliary winding be disconnected in a capacitor-start motor after the motor has picked up speed?	7
	(b)	Describe the shaded-pole method of starting a single phase induction motor.	7
5.	Writ	e short notes on the following :	14
	(a)	AC servo motor	
	(b)	Double revolving field theory	
6.	The power input to a 3-phase induction moto 50 kW and corresponding stator losses are 2 Calculate		
	(i)	the total mechanical power developed and rotor copper loss when the slip is 3%.	
	(ii)	the efficiency of the motor.	14
7.	conn 240 the c	phase synchronous motor absorbing 60 kW is ected in parallel with a factory load of kW having a lagging power factor of 0.8. If combined load has a p.f. of 0.9, what is the e of the leading KVAR supplied by the motor at what power factor is it working?	14
8.	Wha	-	
0.		ction motors? Enumerate the merits and	
	dem	erits of each of these.	14