No. of Printed Pages: 3

BICEE-022

P.T.O.

B.Tech. IN CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

00625

BICEE-022

December, 2014

BICEE-022: ADVANCED DESIGN OF FOUNDATION

Tin	ne : 3 i	hours Maximum Marks:	Maximum Marks : 70	
Note: Attempt any seven questions. Assume suitable if required. Use of scientific calculator is perm				
1.	(a)	Write down the various limitations of Winkler's Model and Hetengi's Model for beam elastic solution.	5	
	(b)	A concrete pile, 30 cm square and 5 m long, is subjected to a horizontal load of 500 N, and the moment of 400 N-m at the ground level. Taking the $\eta_n = 20 \text{ N/cm}^3$, find the		
		maximum deflection if the head of the pile is considered to be free.	5	
2.	(a)	Explain in brief the design of single wall coffer dams with suitable sketches.	5	
	(b)	Discuss the various types of sheet piles and its uses.	5	
3.	(a)	Explain the cellular stability of cellular coffer dams with an example.	5	
	(b)	Discuss the various types of coffer dams with suitable sketches.	5	

T •	shee 2·3 g up t piles of th	et piling. It has to retain a soil bulk density of g/cc and the angle of internal friction of 33°, to a height of 5 m. Find the depth to which the should be driven, assuming that two-third the theoretical passive resistance is developed the embedded length.	10
5.	(a)	Briefly explain Barkan's Method of machine foundation design.	5
	(b)	Discuss the use of single degree freedom system in the analysis of machine foundation.	5
6.	(a)	How do you determine the mass spring constant and damping factor for a vibrating system?	5
	(b)	Discuss the design criteria for the design of foundation of impact type machine as per B.I.S. Code.	5
7.	(a)	Illustrate different types of shell foundations with neat sketches.	5
	(b)	Give the special features of shell foundation for silos and chimneys.	5
8.	(a)	Draw a pressure distribution diagram of cantilever sheet pile in purely cohesive soils.	5
	(b)	What do you mean by Arching of soil and its uses on the design of the flexible anchored sheet pile walls?	5

- 9. (a) Based on Winkler's Model, give the classic solution for beam of infinite length subjected to central concentrated load.
 - (b) Describe the free and forced vibration for single degree of freedom without damping. 5
- **10.** Explain any *two* of the following terms: $2 \times 5 = 10$
 - (a) Cantilever sheet pile walls
 - (b) Modulus of Subgrade Reaction
 - (c) Condition of piping in coffer dams