No. of Printed Pages: 3

BICEE-021

B.Tech. IN CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

00195

December, 2014

BICEE-021 : COMPUTATIONAL METHODS IN STRUCTURAL ENGINEERING

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. Solve the following set of equations by Gauss Elimination Method:

$$x + y + z = 3$$

$$x + 2y + 2z = 5$$

$$3x + 4y + 4z = 11$$

2. Solve the problem by integer linear programming

Maximize
$$z = 3x_1 + x_2$$

Subject to
$$2x_1 - x_2 \le 6$$

$$3x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

 x_1 and x_2 are integers.

14

3. (a) Discuss the properties of a concave and convex function.

7

(b) Locate the stationary points of f(x) and find out if the function is convex, concave or neither at the points of optima based on testing rules.

$$f(x) = \frac{2x_1^3}{3} - 2x_1x_2 - 5x_1 + 2x_2^2 + 4x_2 + 5$$

4. Minimize $f = x_1^2 + x_2^2 + 60x_1$ subject to the constraints

$$\begin{aligned} g_1 &= x_1 - 80 \geq 0 \\ g_2 &= x_1 + x_2 - 120 \geq 0 \\ using \ Kuhn - Tucker \ condition. \end{aligned}$$

14

5. Transform the general form of a linear programming problem given below to its standard form and solve it.

$$\begin{aligned} \text{Minimize } \mathbf{z} &= -3\mathbf{x}_1 - 5\mathbf{x}_2 \\ 2\mathbf{x}_1 - 3\mathbf{x}_2 &\leq 15 \\ \mathbf{x}_1 + \mathbf{x}_2 &\leq 3 \\ 4\mathbf{x}_1 + \mathbf{x}_2 &\geq 2 \\ \mathbf{x}_1 &\geq 0 \\ \mathbf{x}_2 \text{ unrestricted} \end{aligned}$$

14

6. Define any *two* of the following:

 $2 \times 7 = 14$

- (a) Finite Element Method
- (b) Shape Function
- (c) Duality Theorem
- (d) Kuhn Tucker Theorem

7. Analyze the rigid frame shown in Fig. 1 by Direct Stiffness Matrix Method. Assume E = 200 GPa $I_{zz} = 1.33 \times 10^{-4} \text{ m}^4$ and A = 0.04 m^2 . The flexural rigidity EI and axial rigidity EA are same for both the beams.

14

Fig. 1