B.Tech. IN CIVIL ENGINEERING (BTCLEVI)
 Term-End Examination
 凹rIV!
 December, 2014

BICEE-020 : RELIABILITY AND OPTIMIZATION OF STRUCTURES

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. Use of scientific calculator is permitted. All questions carry equal marks.

1. (a) State Bayes' Theorem and express it in mathematical form.
(b) Discuss de Morgan's rule in brief.
(c) A person has undertaken a construction job. The probabilities are 0.65 that there will be a strike, 0.80 that the construction job will be completed on time if there is no strike, and 0.32 that the construction job will be completed on time if there is a strike. Determine the probability that the construction job will be completed on time.
2. (a) Explain the terms Normal distribution, Standard Normal distribution and Poisson distribution.
(b) A car manufacturing factory has two plants, X and Y. Plant X manufactures 70% of cars and plant Y manufactures 30%. 80% of the cars at plant X and 90% of the cars at plant Y are rated of standard quality. What is the probability that a standard car has come from plant X?
3. (a) Write down the mathematical expression of probability function of Binomial distribution. State various conditions under which Binomial distribution is valid.
(b) Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, find the probability of X.
(c) Explain the terms gamma distribution and extreme value distribution.

2
4. (a) Explain the Conjugate Gradient method in brief.
(b) Use the Conjugate Gradient method to solve the following problem :

10
Minimize
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}-\mathrm{x}_{2}+2 \mathrm{x}_{1}^{2}+2 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{2}^{2}$ from the point $x_{1}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$.
5. (a) Explain the Steepest Descent method with suitable example.
(b) Find the minimum of the function $f(\lambda)=0.65-\frac{0.75}{1+\lambda^{2}}-0.65 \lambda \tan ^{-1}\left(\frac{1}{\lambda}\right)$
using quasi-Newton method with starting point $\lambda_{1}=0.1$ and step size $\Delta \lambda=0.01$ in central difference formulas. Use $\varepsilon=0.01$ in

$$
\left|f^{\prime}\left(\lambda_{i+1}\right)\right|=\left|\frac{f\left(\lambda_{(i+1)}+\Delta \lambda\right)-f\left(\lambda_{i+1}-\Delta \lambda\right)}{2 \Delta \lambda}\right| \leq \varepsilon
$$

for checking the convergence.
6. (a) Minimize
$\mathrm{f}=20 \mathrm{x}_{1}+16 \mathrm{x}_{2}$ using Dual Simplex method subject to

$$
\begin{aligned}
& x_{1} \geq 2 \cdot 5 \\
& x_{2} \geq 6 \\
& 2 x_{1}+x_{2} \geq 17 \\
& x_{1}+x_{2} \geq 12 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

(b) Explain the objective function and design space with respect to optimization problem with suitable examples.
8. Write short notes on any four the following :
(a) Monte Carlo Method

$$
4 \times 3 \frac{1}{2}=14
$$

(b) Hasofer and Lind Method
(c) Series and Parallel Systems
(d) Uncertainties in Reliability Assessment
(e) First Order Second Moment Method (FOSM)

