No. of Printed Pages: 4

B.Tech. – VIEP – ELECTRICAL ENGINEERING (BTELVI)

00205

Term-End Examination December, 2014

BIEE-014 : NETWORK THEORY

Time : 3 hours

Maximum Marks: 70

Note : Attempt any **five** questions. All questions carry equal marks.

- **1.** (a) Distinguish between
 - (i) tree and co-tree
 - (ii) mesh and loop
 - (iii) planar and non-planar graph
 - (iv) incidence matrix and reduced incidence matrix
 - (b) Draw the graph of the network shown in the Fig. 1. Select a suitable tree to write tie-set schedule. Hence find the three loop currents.

Fig. 1

BIEE-014

P.T.O.

BIEE-014

7

7

- 2. (a) (i) Explain maximum power transfer theorem for ac circuit.
 - (ii) In the network shown in Fig. 2 two voltage sources act on the load Z_L . If the load is variable, for what value load Z_L will receive maximum power?

7

7

7

7

- гıg. Z
- (b) State and prove Millman's Theorem.
- 3. (a) What is driving point impedance ? Determine the driving point impedance $Z_{11}(s)$ of the network shown in the Fig. 3.

Fig. 3

(b) What are poles and zeroes ? Explain the significance of the poles and zeroes in the network functions.

BIEE-014

- 4. (a) (i) Derive the condition of reciprocity for Z-parameters.
 - (ii) Check whether the network shown in the Fig. 4 is reciprocal or not.

(b) Why are ABCD parameters known as transmission parameters ? Two identical sections of the network shown in the Fig. 5 are cascaded. Calculate the transmission parameters of the resulting network.

- 5. (a) (i) State clearly the conditions to be fulfilled for a function to be positive real.
 - (ii) Justify $F(s) = s + \sqrt{s^2 + 1}$ is a positive real function.

BIEE-014

3

P.T.O.

7

7

7

- (b) Realise the following RC driving point impedance function in Foster-I form $Z(s) = \frac{s^2 + 4s + 3}{s^2 + 2s}$
- 6. (a) The image impedances of the network shown in the Fig. 6 are $Z_{i1} = 100 \Omega$ and $Z_{i2} = 50 \Omega$. Calculate the values of impedances Z_1 and Z_2 .

Fig. 6

- (b) What is high pass filter ? Prove the cut-off frequency $f_c = \frac{1}{4\pi \sqrt{LC}}$ for constant-K high pass filter (T-section).
- 7. Write short notes on any *two* of the following :

 $2 \times 7 = 14$

- (a) Compensation Theorem
- (b) Transfer function and its properties
- (c) Interconnections of two port networks
- (d) Procedure for testing positive real functions

BIEE-014

1,000

7

7

7