（BTELVI）

Term－End Examination

December， 2014

BIEE－014 ：NETWORK THEORY

Time ： 3 hours
Maximum Marks ： 70
Note：Attempt any five questions．All questions carry equal marks．

1．（a）Distinguish between 7
（i）tree and co－tree
（ii）mesh and loop
（iii）planar and non－planar graph
（iv）incidence matrix and reduced incidence matrix
（b）Draw the graph of the network shown in the Fig．1．Select a suitable tree to write tie－set schedule．Hence find the three loop currents．

Fig． 1
2. (a) (i) Explain maximum power transfer theorem for ac circuit.
(ii) In the network shown in Fig. 2 two voltage sources act on the load Z_{L}. If the load is variable, for what value load Z_{L} will receive maximum power?

Fig. 2
(b) State and prove Millman's Theorem.
3. (a) What is driving point impedance ? Determine the driving point impedance $Z_{11}(s)$ of the network shown in the Fig. 3.

Fig. 3
(b) What are poles and zeroes ? Explain the significance of the poles and zeroes in the network functions.
4. (a) (i) Derive the condition of reciprocity for Z-parameters.
(ii) Check whether the network shown in the Fig. 4 is reciprocal or not.

Fig. 4
(b) Why are ABCD parameters known as transmission parameters ? Two identical sections of the network shown in the Fig. 5 are cascaded. Calculate the transmission parameters of the resulting network.

Fig. 5
5. (a) (i) State clearly the conditions to be fulfilled for a function to be positive real.
(ii) Justify $F(s)=s+\sqrt{s^{2}+1}$ is a positive real function.
(b) Realise the following RC driving point impedance function in Foster-I form $Z(s)=\frac{s^{2}+4 s+3}{s^{2}+2 s}$
6. (a) The image impedances of the network shown in the Fig. 6 are $Z_{i 1}=100 \Omega$ and $Z_{i 2}=50 \Omega$. Calculate the values of impedances Z_{1} and Z_{2}.

Fig. 6
(b) What is high pass filter ? Prove the cut-off frequency $f_{c}=\frac{1}{4 \pi \sqrt{L C}}$ for constant-K high pass filter (T-section).
7. Write short notes on any two of the following:

$$
2 \times 7=14
$$

(a) Compensation Theorem
(b) Transfer function and its properties
(c) Interconnections of two port networks
(d) Procedure for testing positive real functions

